
Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  1 

Intel® C++ Composer XE 2013 SP1 for 
OS X* Installation Guide and Release 
Notes 

Document number: 321413-005US 

29 July 2013 

Table of Contents 
1 Introduction ......................................................................................................................... 4 

1.1 Change History ............................................................................................................ 4 

1.1.1 Changes since Intel® Composer XE 2013 ............................................................ 4 

1.2 Product Contents ......................................................................................................... 4 

1.3 System Requirements .................................................................................................. 5 

1.4 Documentation ............................................................................................................. 5 

1.5 Samples ....................................................................................................................... 6 

1.6 Technical Support ........................................................................................................ 6 

2 Installation ........................................................................................................................... 6 

2.1 Online Installation now available in Intel® Composer XE 2013 SP1 ............................. 7 

2.2 Intel® Software Manager ............................................................................................. 7 

2.3 Using a License or Serial Number from Intel® C++ Compiler 11.1 Professional Edition 

to Install .................................................................................................................................. 7 

2.4 Using a License Server ................................................................................................ 7 

2.5 Xcode* integration-only installation no longer provided ................................................ 7 

2.6 Installation Folders ....................................................................................................... 8 

2.7 Installing Intel® Integrated Performance Primitives Cryptography Libraries ................. 9 

2.8 Relocating Product After Install .................................................................................... 9 

2.9 Removal/Uninstall ........................................................................................................ 9 

3 Intel® C++ Compiler ..........................................................................................................10 

3.1 New and Changed Features .......................................................................................10 

3.1.1 Support for Upcoming OpenMP* features added in Composer XE 2013 SP1 ......11 

3.1.2 Intel® Cilk™ Plus changes in Intel® C++ Composer XE 2013 SP1 .....................11 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  2 

3.1.3 New attribute for pointers and pointer types to specify assumed data alignment in 

Composer XE 2013 SP1 ....................................................................................................11 

3.1.4 New attribute to variable declarations to avoid false sharing in Composer XE 2013 

SP1 12 

3.1.5 New __INTEL_COMPILER_UPDATE predefined macro in Composer XE 2013 

SP1 12 

3.2 New and Changed Compiler Options ..........................................................................12 

3.2.1 New and Changed in Composer XE 2013 SP1 ....................................................12 

3.2.2 –[no-]openmp-simd added to Composer XE 2013 SP1 ........................................12 

3.2.3 –use-clang-env is now enabled by default in Composer XE 2013 SP1 ................12 

3.2.4 –mtune added to Composer XE 2013 SP1 ..........................................................13 

3.2.5 –gcc-version is deprecated in Composer XE 2013 Update 2 ...............................13 

3.3 Other Changes ...........................................................................................................13 

3.3.1 Environment Setup Script Changed .....................................................................13 

3.3.2 __attribute__((always_inline)) now requires inline keyword to enable inlining with 

Composer XE 2013 SP1 ....................................................................................................13 

3.3.3 OpenMP* Legacy Libraries Removed ..................................................................13 

3.4 Sample Notes .............................................................................................................14 

3.4.1 Building Tachyon .................................................................................................14 

3.5 Known Limitations .......................................................................................................14 

3.5.1 No support for libc++ in Composer XE 2013, but added in Composer XE 2013 

SP1 14 

3.5.2 Creating new project in Xcode 4.6 or above causes hardcoding of –stdlib=libc++14 

4 GNU* Project Debugger (GDB*) ........................................................................................14 

4.1 Features .....................................................................................................................15 

4.2 Starting the debugger .................................................................................................15 

4.3 Documentation ............................................................................................................15 

4.4 Compatibility ...............................................................................................................15 

5 Intel® Debugger (IDB) .......................................................................................................15 

5.1 Support Deprecated for Intel® Debugger ....................................................................15 

5.2 Compilation Requirements ..........................................................................................15 

5.2.1 Debug information stored in object files ...............................................................15 

5.2.2 Compilation requirements for debugging on OS X* 10.7 (64-bit only) ..................16 

5.3 Known Issues .............................................................................................................16 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  3 

5.3.1 Dwarf vs. Stabs Debug Formats ..........................................................................16 

5.3.2 Debug Info from Shared Libraries ........................................................................16 

5.3.3 Non-local Binary and Source File Access ............................................................16 

5.3.4 Debugging applications that fork ..........................................................................17 

5.3.5 Debugging applications that exec ........................................................................17 

5.3.6 Snapshots ............................................................................................................17 

5.3.7 Debugging optimized code...................................................................................17 

5.3.8 Watchpoints .........................................................................................................17 

5.3.9 Graphical User Interface (GUI) ............................................................................17 

5.3.10 MPP Debugging Restrictions ...............................................................................17 

5.3.11 Function Breakpoints ...........................................................................................17 

5.3.12 Core File Debugging ............................................................................................17 

5.3.13 Universal Binary Support .....................................................................................18 

5.3.14 Debugger variable $threadlevel ...........................................................................18 

5.3.15 Open File Descriptors Limitation ..........................................................................18 

5.3.16 $cdir, $cwd Directories ...................................................................................18 

5.3.17 info stack Usage ............................................................................................18 

5.3.18 $stepg0 Default Value Changed .......................................................................18 

6 Intel® Integrated Performance Primitives ...........................................................................19 

6.1 Intel® IPP Cryptography Libraries are Available as a Separate Download ..................19 

6.2 Intel® IPP Code Samples ...........................................................................................19 

7 Intel® Math Kernel Library .................................................................................................19 

7.1 Notices ........................................................................................................................19 

7.2 Changes in This Version .............................................................................................20 

7.2.1 What's New in Intel MKL 11.1 ..............................................................................20 

7.3 Attributions ..................................................................................................................21 

8 Intel® Threading Building Blocks .......................................................................................22 

9 Disclaimer and Legal Information .......................................................................................22 

 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  4 

1 Introduction 
This document describes how to install the product, provides a summary of new and changed 

product features and includes notes about features and problems not described in the product 

documentation. 

Due to the nature of this comprehensive integrated software development tools solution, 

different Intel® C++ Composer XE components may be covered by different licenses. Please 

see the licenses included in the distribution as well as the Disclaimer and Legal Information 

section of these release notes for details. 

1.1 Change History 

This section highlights important from the previous product version and changes in product 

updates.  For information on what is new in each component, please read the individual 

component release notes. 

1.1.1 Changes since Intel® Composer XE 2013 

 Online installation 

 Intel® C++ Compiler XE 14.0.0 

 GNU* Project Debugger (GDB*) 

 -use-clang-env enabled by default 

 libc++ now supported 

 OS X* 10.7 is no longer supported 

 Xcode* 4.4 and 4.5 are no longer supported 

 Features from C++11 (-std=c++11) 

 Partial OpenMP* 4.0 RC2 support 

 Intel® Cilk™ Plus changes 

 __INTEL_COMPILER_UPDATE predefined macro 

 Pointer type alignment qualifiers 

 Variable definition attributes to avoid false sharing 

 -mtune performance tuning option 

 New KMP_PLACE_THREADS environment variable 

 New __INTEL_PRE_CFLAGS and __INTEL_POST_CFLAGS environment variables 

 New –vec-report7 vectorization report level 

 -[no-]pch-messages to enable/disable precompiled header diagnostics 

 -openmp-simd option added for controlling the enabling/disabling of specific OpenMP* 

4.0 features independently of other OpenMP features 

 -xATOM_SSE4.2 option added to support Silvermont microarchitecture 

 Intel® Math Kernel Library 11.1 

 Intel® Integrated Performance Primitives 8.0 update 1 

 Intel® Threading Building Blocks 4.2 

1.2 Product Contents 

Intel® C++ Composer XE 2013 SP1 for OS X* includes the following components: 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  5 

 Intel® C++ Compiler XE 14.0.0 for building applications that run on Intel-based Mac 

systems running the OS X* operating system 

 GNU* Project Debugger (GDB*) 7.5  

 Intel® Debugger 13.0  

 Intel® Integrated Performance Primitives 8.0 update 1 

 Intel® Math Kernel Library 11.1 

 Intel® Threading Building Blocks 4.2 

 Integration into the Xcode* development environment  

 On-disk documentation 

1.3 System Requirements 

 A 64-bit Intel®-based Apple* Mac* system host (development for 32-bit is still supported) 

 1GB RAM minimum, 2GB RAM recommended 

 3GB free disk space 

 One of the following combinations of OS X*, Xcode* and the Xcode SDK:  

o OS X 10.8 and Xcode* 4.6 and SDK 10.8 

 If doing command line development, the Command Line Tools component of Xcode* is 

required 

Additional requirements to use GDB* 

 To use the provided GDB*, Python* version 2.6 or 2.7 is required. 

Note: Advanced optimization options or very large programs may require additional resources 

such as memory or disk space. 

1.4 Documentation 

Product documentation can be found in the Documentation folder as shown under Installation 

Folders.  

 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  6 

1.5 Samples 

Samples for each product component can be found in the Samples folder as shown under 

Installation Folders. 

1.6 Technical Support 

If you did not register your compiler during installation, please do so at the Intel® Software 

Development Products Registration Center at http://registrationcenter.intel.com. Registration 

entitles you to free technical support, product updates and upgrades for the duration of the 

support term.  

For information about how to find Technical Support, Product Updates, User Forums, FAQs, tips 

and tricks, and other support information, please visit: 

http://www.intel.com/software/products/support/  

Note: If your distributor provides technical support for this product, please contact them for 

support rather than Intel. 

2 Installation 
The installation of the product requires a valid license file or serial number. If you are evaluating 

the product, you can also choose the “Evaluate this product (no serial number required)” option 

during installation. 

If you will be using Xcode*, please make sure that a supported version of Xcode is installed. If 

you install a new version of Xcode in the future, you must reinstall the Intel C++ Compiler 

afterwards. 

The Command Line Tools component, required for command-line development, is not installed 

by default. It can be installed using the Components tab of the Downloads preferences panel. 

You will need to have administrative or “sudo” privileges to install, change or uninstall the 

product. 

If you received the compiler product on DVD, insert the DVD. Locate the disk image file 

(xxx.dmg) on the DVD and double-click on it. If you received the compiler product as a 

download, double-click the downloaded file. 

Follow the prompts to complete installation. 

Note that there are several different downloadable files available, each providing different 

combinations of components.  Please read the download web page carefully to determine which 

file is appropriate for you. 

You do not need to uninstall previous versions or updates before installing a newer version – 

the new version will coexist with the older versions. 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  7 

2.1 Online Installation now available in Intel® Composer XE 2013 SP1 

The default electronic installation package for Intel® Composer XE 2013 SP1 now consists of a 

smaller installation package that dynamically downloads and then installs packages selected to 

be installed. This requires a working internet connection and potentially a proxy setting if you 

are behind an internet proxy. Full packages are provided alongside where you download this 

online install package if a working internet connection is not available. 

2.2 Intel® Software Manager 

The installation now provides an Intel® Software Manager to provide a simplified delivery 

mechanism for product updates and provide current license status and news on all installed 

Intel® software products. 

You can also volunteer to provide Intel anonymous usage information about these products to 

help guide future product design. This option, the Intel® Software Improvement Program, is not 

enabled by default – you can opt-in during installation or at a later time, and may opt-out at any 

time. For more information please see http://intel.ly/SoftwareImprovementProgram. 

2.3 Using a License or Serial Number from Intel® C++ Compiler 11.1 

Professional Edition to Install 

Serial numbers and licenses distributed for use with the Intel® C++ Compiler 11.1 Professional 

Edition will not work with Intel® C++ Composer XE 2013.  You can obtain a new upgraded 

license and serial number for free if your current product is active by doing the following: 

1. Login to the Intel® Software Development Products Registration Center at 

http://registrationcenter.intel.com by entering your Login ID and Password in the 

Registered Users Login section of the web page. You will find a list of all products you 

have subscriptions for in the "My Products" page. 

2. For the current product, you will see the XE product name displayed in addition to the 

original product name. Clicking the latest update in the download latest update column 

leads you to the product upgrade page. Click the product name to upgrade. 

3. You can now send yourself an email with the updated license file or use the updated 

serial number to install the C++ Composer XE 2013 product. 

2.4 Using a License Server 

If you have purchased a "floating" license, see http://intel.ly/pjGfwC for information on how to 

install using a license file or license server. This article also provides a source for the Intel® 

License Server that can be installed on any of a wide variety of systems. 

2.5 Xcode* integration-only installation no longer provided 

The C++ Composer XE 2013 installation only allows you to install with command-line tools only 

or with command-line tools and Xcode* integration.  There is no longer an option to only install 

the integration with Xcode*. 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  8 

2.6 Installation Folders 

The compiler installs, by default, under /opt/intel – this is referenced as <install-dir> 

in the remainder of this document. You are able to specify a different location. 

The directory organization has changed since the Intel® Compilers 11.1 release. 

While the top-level installation directory has also changed between the original C++ Composer 

XE 2011 release and Composer XE 2013, the composerxe symbolic link can still be used to 

reference the latest product installation. 

Under <install-dir> are the following directories: 

 bin – contains symbolic links to executables for the latest installed version 

 lib – symbolic link to the lib directory for the latest installed version 

 include – symbolic link to the include directory for the latest installed version 

 man – symbolic link to the directory containing man pages for the latest installed version 

 ipp – symbolic link to the directory for the latest installed version of Intel® Integrated 

Performance Primitives 

 mkl – symbolic link to the directory for the latest installed version of Intel® Math Kernel 

Library 

 tbb – symbolic link to the directory for the latest installed version of Intel® Threading 

Building Blocks 

 ism – contains files for Intel® Software Manager 

 composerxe – symbolic link to the composer_xe_2013 directory 

 composer_xe_2013_sp1 – directory containing symbolic links to subdirectories for the 

latest installed Intel® Composer XE 2013 compiler release 

 composer_xe_2013_sp1.<n>.<pkg> - physical directory containing files for a 

specific compiler version. <n> is the update number, and <pkg> is a package build 

identifier. 

Each composer_xe_2013_sp1 directory contains the following directories that reference the 

latest installed Intel® Composer XE 2013 SP1 compiler: 

 bin – directory containing scripts to establish the compiler environment and symbolic 

links to compiler executables for the host platform 

 pkg_bin – symbolic link to the compiler bin directory  

 include – symbolic link to the compiler include directory 

 lib – symbolic link to the compiler lib directory 

 ipp – symbolic link to the ipp directory 

 mkl – symbolic link to the mkl directory 

 tbb – symbolic link to the tbb directory 

 debugger – symbolic link to the debugger directory 

 man – symbolic link to the man directory 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  9 

 Documentation – symbolic link to the Documentation directory 

 Samples – symbolic link to the Samples directory 

Each composer_xe_2013_sp1.<n>.<pkg> directory contains the following directories that 

reference a specific update of the Intel® Composer XE 2013 SP1 compiler: 

 bin – all executables 

 pkg_bin – symbolic link to bin directory 

 compiler – shared libraries and header files 

 debugger – debugger files 

 Documentation – documentation files 

 man – symbolic link to the man directory 

 ipp – Intel® Integrated Performance Primitives libraries and header files 

 mkl – Intel® Math Kernel Library libraries and header files 

 tbb – Intel® Threading Building Blocks libraries and header files 

 Samples – Product samples and tutorial files 

If you have both the Intel C++ and Intel Fortran compilers installed, they will share folders for a 

given version and update. 

This directory layout allows you to choose whether you want the latest compiler, no matter 

which version, the latest update of the Intel® Composer XE 2013 SP1 compiler, or a specific 

update.  Most users will reference <install-dir>/bin for the compilervars.sh [.csh] 

script, which will always get the latest compiler installed. This layout should remain stable for 

future releases. 

2.7 Installing Intel® Integrated Performance Primitives Cryptography 

Libraries 

The Intel® Integrated Performance Primitives product provides an optional component 

containing libraries of cryptography routines.  Installation and use of the cryptography libraries 

requires a separate license that is available at no charge from Intel once your license for Intel 

Integrated Performance Primitives has been registered.  Export restrictions apply. For details, 

please see http://intel.ly/ndrGnR   

2.8 Relocating Product After Install 

The Xcode integration is relocatable simply by dragging and dropping the Xcode directory tree 

to another location.  If you wish to use idb from a command prompt using a relocated Xcode 

directory tree, please see http://intel.ly/q3Fl3R for additional steps that are required.  Note that 

idb is not available from within the Xcode IDE. 

2.9 Removal/Uninstall 

It is not possible to remove the compiler while leaving any of the performance library 

components installed. 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  10 

1. Open Terminal and set default (cd) to any folder outside <install-dir> 

2. Type the command:  

<install-dir>/composer_xe_2013_sp1.<n>.<pkg>/uninstall_ccompxe.sh  

3. Follow the prompts 

If you are not currently logged in as root you will be asked for the root password.  

3 Intel® C++ Compiler 
This section summarizes changes, new features and late-breaking news about the Intel C++ 

Compiler. 

3.1 New and Changed Features 

C++ Composer XE 2013 SP1 now contains Intel® C++ Compiler XE 14.0.  The following 

features are new or significantly enhanced in this version.  For more information on these 

features, please refer to the documentation. 

 Features from C++11 (-std=c++11) 

o Complete (instead of partial) implementation of initializer lists. See N2672 and 

N3217. 

o Complete implementation of inline namespaces. See N2535. 

o Complete implementation of non-static data member initializers. See N2756. 

o Complete implementation of generalized constant expressions. See N2235. 

o Complete implementation of unrestricted unions. See N2544. 

o Delegating constructors. See N1986. 

o Rvalue references for *this. See N2439. 

o Raw string literals. See N2442. 

o Conversions of lambdas to function pointers. 

o Implicit move constructors and assignment operators. See N3053. 

o __bases and __direct_bases type traits. 

o The context-sensitive keyword "final" can now be used on a class definition, and 

"final" and "override" can be used on member function declarations.  See N2928, 

N3206, and N3272. 

o Complete implementation of the "noexcept" specifier and operator.  See N3050. 

Includes the late instantiation of noexcept per core issue 1330. 

 Partial OpenMP* 4.0 RC1 and TR1 support 

 Intel® Cilk™ Plus changes 

 __INTEL_COMPILER_UPDATE predefined macro 

 Pointer type alignment qualifiers 

 Variable definition attributes to avoid false sharing 

 -mtune performance tuning option 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  11 

3.1.1 Support for Upcoming OpenMP* features added in Composer XE 2013 SP1 

Composer XE 2013 SP1 adds support for certain preliminary OpenMP* features. The features 

added as defined in the OpenMP* 4.0 Public Review Release Candidate 2 specification 

available from http://openmp.org are: 

 SIMD pragmas and clauses 

 #pragma omp taskgroup construct 

 Atomic clause seq_cst 

 Six new forms of atomic capture and update: 

o Atomic swap: {v = x; x = expr;} 

o Atomic update: x = expr binop x; 

o Atomic capture 1: v = x = x binop expr; 

o Atomic capture 2: v =x = expr binop x; 

o Atomic capture 3: {x = expr binop x; v = x;} 

o Atomic capture 4: {v = x; x = expr binop x;} 

 proc_bind(<type>) clause where <type> is “spread”, “close”, or “master” 

 OMP_PLACES environment variable 

 OMP_PROC_BIND environment variable 

 omp_get_proc_bind() API 

3.1.2 Intel® Cilk™ Plus changes in Intel® C++ Composer XE 2013 SP1 

Please note the following new features for Intel® Cilk™ Plus in Intel C++ Composer XE 2013 

SP1: 

 Elemental function implementation has changed to be more compatible with other vector 

function implementations in gcc and OpenMP*. This breaks binary compatibility with 

previous Intel® C++ Compiler versions (13.1 and earlier). You should either rebuild all 

codes using elemental functions with the version 14.0 compiler, or use the –

vecabi=legacy compiler option to use the previous implementation. 

 New multiply reducer defined in cilk/reducer_opmul.h 

 Three new array notation reduction intrinsics have been added to support bitwise 

reduction operations: 

o __sec_reduce_and 

o __sec_reduce_or 

o __sec_reduce_xor 

3.1.3 New attribute for pointers and pointer types to specify assumed data alignment in 

Composer XE 2013 SP1 

__declspec(align_value(N)) and __attribute__((align_value(N))) have been added to indicate to 

the compiler it can assume the specified alignment “N” when using the attributed pointer type. 

For example: 

typedef float float_a16  

__attribute__((align_value (16))); 

 

void foo(float_a16 *restrict dest, float_a16 *restrict src){ 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  12 

 

Let’s the compiler know that the src and dest arguments should be aligned by the user on 16-

byte boundaries. 

3.1.4 New attribute to variable declarations to avoid false sharing in Composer XE 2013 

SP1 

__declspec(avoid_false_share)/__attribute__((avoid_false_share)) and 

__declspec(avoid_false_share(identifier))/__attribute__((avoid_false_share(identifier))) have 

been added to indicate to the compiler that the variable attributed should be suitably padded or 

aligned to avoid false sharing with any other variable. If an identifier is specified, then any 

variables attributed with that identifier will be padded or aligned to avoid false sharing with any 

other variables except those others with the same identifier. These attributes must be on 

variable definitions in function, global, or namespace scope. If in function scope, the scope of 

the identifier is the current function. If the variable definition is in global or namespace scope, 

the scope of the identifier is in the current compilation unit. 

3.1.5 New __INTEL_COMPILER_UPDATE predefined macro in Composer XE 2013 SP1 

A new __INTEL_COMPILER_UPDATE predefined macro can now be used to obtain the minor 

update number for the Intel® Compiler being used. For example, for a compiler version 14.0.2, 

the macro would preprocess to “2”. 

3.2 New and Changed Compiler Options 

For details on these and all compiler options, see the Compiler Options section of the on-disk 

documentation. 

3.2.1 New and Changed in Composer XE 2013 SP1 

 -[no-]openmp-simd 

 -xATOM_SSE4.2 

 -xATOM_SSSE3 

 -mlong-double-64 

 -mlong-double-80 

 -vecabi=<arg> 

 -W[no-]pch-messages 

 -mtune=<arch> 

For a list of deprecated compiler options, see the Compiler Options section of the 

documentation. 

3.2.2 –[no-]openmp-simd added to Composer XE 2013 SP1 

This option allows you to enable/disable the SIMD features of OpenMP* 4.0 independently of 

support of the rest of OpenMP* (enabled with –openmp). When –openmp is specified, –

openmp-simd is set as well, allowing the use of this feature. 

3.2.3 –use-clang-env is now enabled by default in Composer XE 2013 SP1 

The option –use-clang-env to enable the use of clang headers and libraries is now on by 

default. To use GNU* headers and libraries, please specify –no-use-clang-env. 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  13 

3.2.4 –mtune added to Composer XE 2013 SP1 

-mtune=<arch> can now be used to specify the compiler “tuning” for a specific architecture, 

similar to how the equivalent gcc* option behaves. 

3.2.5 –gcc-version is deprecated in Composer XE 2013 Update 2 

-gcc-version functionality has been superseded by –gcc-name. –gcc-version has therefore been 

deprecated and may be removed from a future release. 

3.3 Other Changes 

3.3.1 Environment Setup Script Changed 

The compilervars.sh script is used to establish the compiler environment. 

The command takes the form: 

source <install-dir>/bin/compilervars.sh argument 

Where argument is either ia32 or intel64 as appropriate for the architecture you are 

building for. Establishing the compiler environment also establishes the environment for the 

Intel® Debugger, Intel® Performance Libraries and, if present, Intel® Fortran Compiler. 

3.3.2 __attribute__((always_inline)) now requires inline keyword to enable inlining with 

Composer XE 2013 SP1 

In previous Intel compiler versions, a routine declared with the "always_inline" attribute would 

always be inlined. In Composer XE 2013 SP1, the compiler now requires that the routine also 

be inline (either explicitly declared that way using the "inline" keyword or implicitly inline 

because it is a member function whose definition appears inside the class) in order for the 

routine to be inlined. The compiler will now match gcc behavior and also give a warning for this, 

i.e.:  

// t.cpp  

__attribute__((always_inline)) int foo2(int x)  // need to add 

"inline" keyword also  

{  

  return x;  

}  

 

icpc -c t.cpp  

t.cpp(2): warning #3414: the "always_inline" attribute is ignored on 

non-inline functions  

  __attribute__((always_inline)) int foo2(int x)  

                ^ 

3.3.3 OpenMP* Legacy Libraries Removed 

The OpenMP “legacy” libraries have been removed in this release. Only the “compatibility” 

libraries are provided. 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  14 

3.4 Sample Notes 

3.4.1 Building Tachyon 

There are a couple common problems that may come up in the course of building Tachyon.  If 

you use the provided Makefile to do a command-line build of the Tachyon sample, you may get 

errors about not finding directories or finding pbxcp. If you get these, go to the file 

common/gui/makefile.gmake, look for where the two variables XCODE_SDK_SYSROOT and 

PBXCP are set and change them to point to the location of your OS X 10.6 SDK and the pbxcp 

binary respectively. 

For building from Xcode*, you may run into problems building the build_with_tbb configuration 

with llvm gcc*.  The problem will be that the libtbb.dylib cannot be found.  In this case, go to the 

Summary->Linked Frameworks and Libraries section, and manually add the libtbb.dylib 

library from the composer_xe_2013.x.xxx/compiler/lib directory. 

3.5 Known Limitations 

3.5.1 No support for libc++ in Composer XE 2013, but added in Composer XE 2013 SP1 

Support for libc++ has been added to Composer XE 2013 SP1. 

3.5.2 Creating new project in Xcode 4.6 or above causes hardcoding of –stdlib=libc++ 

A new project created in Xcode 4.6 or above causes the hardcoding of a setting for –

stdlib=libc++ even for projects that have the Intel® C++ Compiler toolset added. So setting the 

Intel® C++ Compiler field for the C++ Standard Library setting to libstdc++ is ineffective 

because libc++ overrides the setting. To change this, do the following: 

1. Select the project row in the navigator area at the left of the workspace window  

2. In the project editor that appears, select the row that represents the project level of build 

settings  

3. You should see the C++ Standard Library setting in bold, indicating that it has a 

custom value in this project  

4. Select that row and press the Delete key to remove the customized value  

5. The C++ Standard Library build property should now have the value Compiler 

Default 

Note that you may have to follow the above steps before adding the Intel® C++ Compiler toolset 

to your project build rules. 

4 GNU* Project Debugger (GDB*) 
This section summarizes the changes, new features, customizations and known issues related 

to the GDB* delivered with Intel® Composer XE 2013 SP1. 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  15 

4.1 Features 

The GDB* delivered with Intel® Composer XE 2013 SP1 is based on GDB 7.5 with 

enhancements provided by Intel. This debugger is planned to replace the Intel® Debugger in a 

future release.. In addition to features found in GDB 7.5, there are several other new features: 

 Intel® Parallel Debug Extension for data race detection 

 Trace enhancements based on Branch Trace Store 

 Support for Intel® Transactional Synchronization Extensions (Intel® TSX) 

4.2 Starting the debugger 

To start the GDB delivered with Intel® Composer XE, the compiler environment has to be set, 

after that the GDB on the path should be the one delivered with Intel Composer XE. To be sure 

that the right GDB is being used, please issue the command ‘which gdb’. The resulting path 

should point to the GDB contained in the Intel Composer XE installation directory. 

4.3 Documentation 

In the documentation folder (<installdir>/Documentation/<locale>) there is full GDB* 

documentation. 

4.4 Compatibility 

Python* version 2.6 or 2.7 is required. 

5 Intel® Debugger (IDB) 

5.1 Support Deprecated for Intel® Debugger 

In a future major release of the product, the Intel® Debugger may be removed. This would 

remove the ability to use the idb command line debugger. 

5.2 Compilation Requirements 

5.2.1 Debug information stored in object files 

Starting with Xcode 2.3, the Dwarf debugging information is stored in the object (.o) files. These 

object files are accessed by the debugger to obtain information related to the application being 

debugged and thus must be available for symbolic debugging. 

In cases where a program is compiled and linked in one command, such as: 

    icc -g -o hello.exe hello.c 

the object files are generated by the compiler but deleted before the command completes. The 

binary file produced by this command will have no debugging information. To make such an 

application debuggable users have two options. 

Users may build the application in two steps, explicitly producing a .o file: 

    icc -c -g -o hello.o hello.c 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  16 

    icc -g -o hello.exe hello.o 

Alternatively, users may use the compiler switch -save-temps to prevent the compiler from 

deleting the .o files it generates: 

    icc -g -save-temps -o hello.exe hello.c 

 

The debugger does not use the output of the “dsymutil” utility. 

5.2.2 Compilation requirements for debugging on OS X* 10.7 (64-bit only) 

OS X* 10.7 defaults to building 64-bit executables with Position Independent Executable (PIE) 
code. However, the Intel Debugger (IDB) does not currently support debugging 64-bit 
executables built with PIE. To disable PIE, add the following options at the end of the command 
line: 
 
–Wl,-no_pie 

 
Or if in Xcode*, select “Don’t Create Position Independent Executables” under Build Settings. 

Note that the –g (and optionally –save-temps to save your object files) options are also 

required to build debuggable applications on all OS X versions. 
 

5.3 Known Issues 

5.3.1 Dwarf vs. Stabs Debug Formats 

The debugger only supports debugging of executables whose debug information is in Dwarf2 

format, and does not support the Stabs debug format. Use the -gdwarf-2 flag on the compile 

command to have gcc and g++ generate Dwarf output. The Intel compilers (icc and ifort) 

produce Dwarf2 debug format with the –g flag. 

5.3.2 Debug Info from Shared Libraries 

The debugger does not read debug information from shared libraries. Therefore you cannot set 

a breakpoint to symbols like _exit which are part of a system library. 

5.3.3 Non-local Binary and Source File Access 

The debugger cannot access binary files from a network-mounted file system (such as NFS). 

The error message will look like this: 

Internal error: cannot create absolute path for: /home/me/hello 

You cannot debug "/home/me/hello" because its type is "unknown". 

 

The debugger cannot access source files from a network-mounted file system (such as NFS). 

The error message will look like this: 

Source file not found or not readable, tried... 

./hello.c 

/auto/mount/site/foo/usr1/user_me/c_code/hello.c 

(Cannot find source file hello.c) 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  17 

 

The file-path specified will be correct. 

The workaround in both cases is to copy the files to a local file system (i.e., one which is not 

mounted over the network). 

5.3.4 Debugging applications that fork 

Debugging the child process of an application that calls fork is not yet supported. 

5.3.5 Debugging applications that exec 

The $catchexecs control variable is not supported. 

5.3.6 Snapshots 

Snapshots are not yet supported as described in the manual. 

5.3.7 Debugging optimized code 

Debugging optimized code is not yet fully supported. The debugger may not be able to see 

some function names, parameters, variables, or the contents of the parameters and variables 

when code is compiled with optimizations turned on. 

5.3.8 Watchpoints 

Watchpoints that are created to detect write access don't trigger when a value identical to the 

original has been written. These restrictions are due to a limitation in the OS X* operating 

system. 

Because the SIGBUS signal rather than the SIGSEGV signal is used by the debugger to 

implement watchpoints, you cannot create a signal detector which will catch a SIGBUS signal. 

5.3.9 Graphical User Interface (GUI) 

This version of the debugger does not support the GUI 

5.3.10 MPP Debugging Restrictions 

MPP debugging is not supported as described in the manual. 

5.3.11 Function Breakpoints 

Debugger breakpoints set in functions (using the "stop in" command) may not halt user program 

execution at the first statement. This is due to insufficient information regarding the function 

prologue in the generated Dwarf debug information. As a work-around, use the "stop at" 

command to set a breakpoint on the desired statement. 

The compiler generates a call to "__dyld_func_lookup" as part of the prologue for some 

functions. If you set a breakpoint on this function the debugger will stop there, but local variable 

values may not be valid. The work-around is to set a breakpoint on the first statement inside the 

function. 

5.3.12 Core File Debugging 

Debugging core files is not yet supported. 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  18 

5.3.13 Universal Binary Support 

Debugging of universal binaries is supported. The debugger supports debugging the IA-32 

Dwarf sections of binaries on IA-32 and either the IA-32 or the Intel® 64 sections on Intel® 64. 

5.3.14 Debugger variable $threadlevel 

The manual's discussion of the debugger variable "$threadlevel" says "On OS X*, the debugger 

supports POSIX threads, also known as pthreads." This sentence might be read as implying 

that other kinds of threads might be supported. This is not true; only POSIX threads are 

supported on OS X*. 

5.3.15 Open File Descriptors Limitation  

Because the debugger opens the .o files of a debuggee to read debug information, you should 

raise the open file limit. 

OS X* limits the number of open file descriptors to 256. You can increase this limit as follows: 

ulimit -n 2000 

Please use this command to increase the number of open descriptors before starting the 

debugger. 

This is a workaround until the debugger can better share a limited number of open file 
descriptors over many files.   
 

5.3.16 $cdir, $cwd Directories 

$cdir is the compilation directory (if recorded). This is supported in that the directory is set; but 

$cdir is not itself supported as a symbol. 

$cwd  is the current working directory. Neither the semantics nor the symbol are supported. 

The difference between $cwd and '.' is that $cwd tracks the current working directory as it 

changes during a debug session. '.' is immediately expanded to the current directory at the time 

an entry to the source path is added. 

5.3.17 info stack Usage 

The GDB* mode debugger command "info stack" does not currently support negative frame 

counts the way GDB does, for the following command:  

  info stack [num] 

A positive value of num prints the innermost num frames, a zero value prints all frames and a 

negative one prints the innermost –num frames in reverse order. 

5.3.18 $stepg0 Default Value Changed 

The debugger variable $stepg0 changed default to a value of 0. With the value "0" the 

debugger will step over code without debug information if you do a "step" command. Set the 

debugger variable to 1 to be compatible with previous debugger versions as follows: 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  19 

(idb) set $stepg0 = 1 

6 Intel® Integrated Performance Primitives 
This section summarizes changes, new features and late-breaking news about this version of 

Intel® Integrated Performance Primitives (Intel® IPP).  

The latest information on Intel® IPP 8.0 can be found in the product release notes under 

<install 

dir>/composer_xe_2013_sp1.x.xxx/Documentation/<locale>/ipp/ReleaseNote

s.htm. 

For detailed information about IPP see the following links: 

 New features: see the information below and visit the main Intel IPP product page on 

the Intel web site at: http://intel.ly/OG5IF7; and the Intel IPP Release Notes at 

http://intel.ly/OmWI4d. 

 Documentation, help, and samples: see the documentation links on the IPP product 

page at: http://intel.ly/OG5IF7. 

6.1 Intel® IPP Cryptography Libraries are Available as a Separate 

Download  

The Intel® IPP cryptography libraries are available as a separate download. For download and 

installation instructions, please read http://intel.ly/ndrGnR  

6.2 Intel® IPP Code Samples 

The Intel® IPP code samples are organized into downloadable packages at  

http://intel.ly/pnsHxc  

The samples include source code for audio/video codecs, image processing and media player 

applications, and for calling functions from C++, C# and Java*. Instructions on how to build the 

sample are described in a readme file that comes with the installation package for each sample. 

7 Intel® Math Kernel Library 
This section summarizes changes, new features and late-breaking news about this version of 

Intel® Math Kernel Library (Intel® MKL). All the bug fixes can be found here: 

http://intel.ly/OeHQqf 

7.1 Notices 

Please refer to the Knowledge Base article on Deprecations for more information on the 

following notices  

 Intel® MKL now provides a choice of components to install. Components necessary for 

PGI* compiler, Compaq Visual Fortran* Compiler, SP2DP interface, BLAS95 and 

http://software.intel.com/en-us/articles/intel-mkl-whats-deprecated/


Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  20 

LAPACK95 interfaces, Cluster support (ScaLAPACK and Cluster DFT) and Intel® Many 

Integrated Core Architecture (Intel® MIC Architecture) support are not installed unless 

explicitly selected during installation  

 Unaligned Conditional Numerical Reproducibility (CNR) is not available for Intel MKL 

Cluster components (ScaLAPACK and Cluster DFT)  

 Examples for using Intel MKL with Boost* uBLAS and Java* have been removed from 

product distribution and placed in the following articles:  

o How to use Intel MKL with Java*  

o How to use Boost* uBLAS with Intel MKL  

 Known Issue: User applications on OS X* linked with the libmkl_rt.so library where the 

first call to Intel MKL was made in a parallel section will crash with a segmentation fault 

or with either of these messages:  

“malloc: *** error for object xxxxx: pointer being freed was not 

allocated *** set a breakpoint in malloc_error_break to debug” 

or 

“malloc: *** error for object xxxxx: double free !!! *** set a 

breakpoint in malloc_error_break to debug” 

Workaround: Call any Intel MKL function before the parallel section  

7.2 Changes in This Version 

7.2.1 What's New in Intel MKL 11.1  

 Conditional Numerical Reproducibility : Introduced support for Conditional Numerical 

Reproducibility (CNR) mode on unaligned data  

 Introduced Clang compiler support on OS X*  

 Improved performance of CNR=AUTO mode on recent AMD* systems  

 BLAS:  

o Improved performance of [S/D]GEMV on all Intel processors supporting Intel® 

SSE4.2 and later  

o Optimized [D/Z]GEMM and double-precision Level 3 BLAS functions on Intel® 

Advanced Vector Extensions 2 (Intel® AVX2)  

o Optimized [Z/C]AXPY and [Z/C]DOT[U/C] on Intel® Advanced Vector Extensions 

(Intel® AVX) and Intel AVX2  

o Optimized sequential version of DTRMM on Intel MIC Architecture  

o Tuned DAXPY on Intel AVX2  

 LAPACK:  

o Improved performance of (S/D)SYRDB and (S/D)SYEV for large dimensions 

when only eigenvalues are needed 

o Improved performance of xGESVD for small sizes like M,N<10  

 VSL:  

o Added support and examples for mean absolute deviation  

o Improved performance of Weibull Random Number Generator (RNG) for alpha=1  

o Added support of raw and central statistical sums up to the 4th order, matrix of 

cross-products and median absolute deviation  

http://software.intel.com/en-us/articles/performance-tools-for-software-developers-how-do-i-use-intel-mkl-with-java
http://software.intel.com/en-us/articles/how-to-use-boost-ublas-with-intel-mkl


Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  21 

o Added a VSL example designed by S. Joe and F. Y. Kuo illustrating usage of 

Sobol QRNG with direction numbers which supports dimensions up to 21,201  

o Improved performance of SFMT19937 Basic Random Number Generator 

(BRNG) on Intel MIC Architecture  

 DFT:  

o Improved performance of double precision complex-to-complex transforms on 

Intel MIC Architecture  

o Optimized complex-to-complex DFT on Intel AVX2  

o Optimized complex-to-complex 2D DFT on Intel® Xeon processor E5 v2 series  

o Improved performance for workloads specific to GENE application on Intel Xeon 

E5-series (Intel AVX) and on Intel AVX2  

o Improved documentation data layout for DFTI compute functions  

o Introduced scaling in large real-to-complex FFTs  

 Data Fitting:  

o Improved performance of df?Interpolate1D and df?SearchCells1D functions on 

Intel Xeon processors and Intel MIC Architecture  

o Improved performance of df?construct1d function for linear and 

Hermite/Bessel/Akima cubic types of splines on Intel MIC Architecture, Intel® 

Xeon® processor X5570 and Intel® Xeon® processor E5-2690  

 Transposition  

o Improved performance of in-place transposition for square matrices  

 Examples and tests for using Intel MKL are now packaged as an archive to shorten the 

installation time  

7.3 Attributions  

As referenced in the End User License Agreement, attribution requires, at a minimum, 

prominently displaying the full Intel product name (e.g. "Intel® Math Kernel Library") and 

providing a link/URL to the Intel® MKL homepage (http://www.intel.com/software/products/mkl) 

in both the product documentation and website.  

The original versions of the BLAS from which that part of Intel® MKL was derived can be 

obtained from http://www.netlib.org/blas/index.html.  

The original versions of LAPACK from which that part of Intel® MKL was derived can be 

obtained from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, 

Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. 

Hammarling, A. McKenney, and D. Sorensen. Our FORTRAN 90/95 interfaces to LAPACK are 

similar to those in the LAPACK95 package at http://www.netlib.org/lapack95/index.html. All 

interfaces are provided for pure procedures.  

The original versions of ScaLAPACK from which that part of Intel® MKL was derived can be 

obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are L. S. 

Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, 

G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.  



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  22 

The Intel® MKL Extended Eigensolver functionality is based on the Feast Eigenvalue Solver 2.0 

http://www.ecs.umass.edu/~polizzi/feast/  

PARDISO in Intel® MKL is compliant with the 3.2 release of PARDISO that is freely distributed 

by the University of Basel. It can be obtained at http://www.pardiso-project.org.  

Some FFT functions in this release of Intel® MKL have been generated by the SPIRAL software 

generation system (http://www.spiral.net/) under license from Carnegie Mellon University. The 

Authors of SPIRAL are Markus Puschel, Jose Moura, Jeremy Johnson, David Padua, Manuela 

Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang 

Chen, Robert W. Johnson, and Nick Rizzolo. 

8 Intel® Threading Building Blocks 
For information on changes to Intel® Threading Building Blocks (Intel® TBB), please read the 

file CHANGES in the Intel® TBB documentation directory. 

9 Disclaimer and Legal Information 
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) 

PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO 

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS 

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL 

ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR 

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS 

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR 

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 

OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING 

BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY 

APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A 

SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. 

Intel may make changes to specifications and product descriptions at any time, without notice. 

Designers must not rely on the absence or characteristics of any features or instructions marked 

"reserved" or "undefined." Intel reserves these for future definition and shall have no 

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. 

The information here is subject to change without notice. Do not finalize a design with this 

information. 

The products described in this document may contain design defects or errors known as errata 

which may cause the product to deviate from published specifications. Current characterized 

errata are available on request. 

Contact your local Intel sales office or your distributor to obtain the latest specifications and 

before placing your product order. 



Intel® C++ Composer XE 2013 SP1 for OS X*  
Installation Guide and Release Notes  23 

Copies of documents which have an order number and are referenced in this document, or 

other Intel literature, may be obtained by calling 1-800-548-4725, or go to:  

http://www.intel.com/design/literature.htm  

Intel processor numbers are not a measure of performance. Processor numbers differentiate 

features within each processor family, not across different processor families. Go to:  

http://www.intel.com/products/processor%5Fnumber/ 

The Intel® C++ Compiler, Intel® Debugger, Intel® Integrated Performance Primitives, Intel® 

Math Kernel Library, and Intel® Threading Building Blocks are provided under Intel’s End User 

License Agreement (EULA).  

The GNU* Project Debugger, GDB is provided under the General GNU Public License GPL V3.  

Please consult the licenses included in the distribution for details. 

Celeron, Centrino, Intel, Intel logo, Intel386, Intel486, Atom, Core, Itanium, MMX, Pentium, 

VTune, Cilk, and Xeon are trademarks of Intel Corporation in the U.S. and other countries. 

* Other names and brands may be claimed as the property of others. 

Copyright © 2013 Intel Corporation. All Rights Reserved. 

http://www.intel.com/products/processor_number/

