

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 1

Intel® C++ Composer XE 2013 for OS
X* Installation Guide and Release
Notes

Document number: 321413-004US

14 March 2013

Table of Contents
1 Introduction ... 4

1.1 Change History .. 4

1.1.1 Update 3 (2013.3) ... 4

1.1.2 Update 2 (2013.2) ... 4

1.1.3 Update 1 (2013.1) ... 4

1.1.4 Changes since Intel® C++ Composer XE 2011 .. 4

1.2 Product Contents ... 5

1.3 System Requirements .. 5

1.4 Documentation ... 5

1.5 Samples ... 6

1.6 Technical Support .. 6

2 Installation ... 6

2.1 Intel® Software Manager ... 7

2.2 Using a License or Serial Number from Intel® C++ Compiler 11.1 Professional Edition

to Install .. 7

2.3 Using a License Server .. 7

2.4 Xcode* integration-only installation no longer provided .. 8

2.5 Installation Folders ... 8

2.6 Installing Intel® Integrated Performance Primitives Cryptography Libraries 9

2.7 Relocating Product After Install .. 9

2.8 Removal/Uninstall ...10

3 Intel® C++ Compiler ..10

3.1 New and Changed Features ...10

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 2

3.1.1 Inline assembly and intrinsic support for Intel architecture code named Broadwell

added to Composer XE 2013 Update 1 ..10

3.1.2 core_4th_gen_avx added for manual cpu dispatch in Composer XE 2013 Update

1 12

3.1.3 Intel® Cilk™ Plus “scalar” Clause removed ...12

3.1.4 Support for Intel® Advanced Vector Extensions 2 (Intel® AVX2) Instructions in

2011 Update 7 ...12

3.1.5 Intel® Cilk™ Plus fully supported in 2011 Update 6 ...12

3.1.6 Intel® Cilk™ Plus Array Notations Semantics Change in 2011 update 6..............13

3.1.7 -export and –export-dir deprecated starting in 2011 update 413

3.1.8 Additional Keywords for –sox option, default changed in 2011 update 313

3.1.9 Three intrinsics changed in 2011 update 2 ...13

3.2 New and Changed Compiler Options ..14

3.2.1 New and Changed in Composer XE 2013 ..14

3.2.2 –gcc-version is deprecated in Composer XE 2013 Update 215

3.2.3 New Warning Level –w3 and Changes to Warning Levels in Composer XE 2013 15

3.2.4 -ipp-link option ...15

3.3 Other Changes ...15

3.3.1 Support for Microsoft loop pragma syntax added to Composer XE 2013 Update 1

 15

3.3.2 Environment Setup Script Changed ...15

3.3.3 OpenMP* Legacy Libraries Removed ..16

3.4 Sample Notes ...16

3.4.1 Building Tachyon ...16

3.5 Known Limitations ...16

3.5.1 No support for libc++. ...16

4 Intel® Debugger (IDB) ...16

4.1 Support Deprecated for Intel® Debugger ..16

4.2 Compilation Requirements ..16

4.2.1 Debug information stored in object files ...16

4.2.2 Compilation requirements for debugging on OS X* 10.7 (64-bit only)17

4.3 Known Issues ...17

4.3.1 Dwarf vs. Stabs Debug Formats ..17

4.3.2 Debug Info from Shared Libraries ..17

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 3

4.3.3 Non-local Binary and Source File Access ..17

4.3.4 Debugging applications that fork ..18

4.3.5 Debugging applications that exec ..18

4.3.6 Snapshots ..18

4.3.7 Debugging optimized code...18

4.3.8 Watchpoints ...18

4.3.9 Graphical User Interface (GUI) ..18

4.3.10 MPP Debugging Restrictions ...18

4.3.11 Function Breakpoints ...18

4.3.12 Core File Debugging ..19

4.3.13 Universal Binary Support ...19

4.3.14 Debugger variable $threadlevel ...19

4.3.15 Open File Descriptors Limitation ..19

4.3.16 $cdir, $cwd Directories ...19

4.3.17 info stack Usage ..19

4.3.18 $stepg0 Default Value Changed ...20

5 Intel® Integrated Performance Primitives ...20

5.1 Intel® IPP static threaded Libraries are Available as a Separate Download20

5.2 Intel® IPP Cryptography Libraries are Available as a Separate Download20

5.3 Intel® IPP Code Samples ...20

6 Intel® Math Kernel Library ...21

6.1 Notices ..21

6.2 Changes in This Version ...21

6.2.1 What’s New in Intel® MKL 11.0 Update 3 ..21

6.2.2 What’s New in Intel® MKL 11.0 Update 2 ..21

6.2.3 What’s New in Intel® MKL 11.0 Update 1 ..23

6.2.4 Changes in Initial Release ...23

6.3 Attributions ..24

7 Intel® Threading Building Blocks ...25

8 Disclaimer and Legal Information ...25

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 4

1 Introduction
This document describes how to install the product, provides a summary of new and changed

product features and includes notes about features and problems not described in the product

documentation.

1.1 Change History

This section highlights important from the previous product version and changes in product

updates. For information on what is new in each component, please read the individual

component release notes.

1.1.1 Update 3 (2013.3)

 Intel® C++ Compiler XE 13.0.2

 Intel® Math Kernel Library 11.0 Update 3

 Intel® Threading Building Blocks 4.1 Update 3

 Support for Xcode 4.6

 Xcode 4.3 not supported

 Corrections to reported problems

1.1.2 Update 2 (2013.2)

 No change to compiler or debugger

 –gcc-version is deprecated

 Intel® Math Kernel Library 11.0 Update 2

 Intel® Threading Building Blocks 4.1 Update 2

 Corrections to reported problems

1.1.3 Update 1 (2013.1)

 Intel® C++ Compiler XE 13.0.1

 Intel® Debugger 13.0.1

 Intel® Math Kernel Library 11.0 Update 1

 Intel® Integrated Performance Primitives 7.1 Update 1

 Intel® Threading Building Blocks 4.1 Update 1

 Support for Xcode* 4.5

 Inline assembly and intrinsic support for Intel architecture code named Broadwell

 core_4th_gen_avx added for manual cpu dispatch in Composer XE 2013 Update 1

 Microsoft* loop pragma support

 Corrections to reported problems

1.1.4 Changes since Intel® C++ Composer XE 2011

 Intel® C++ Compiler updated to version 13.0.

 Intel® Debugger updated to version 13.0

o Intel® Debugger support deprecated

 Intel® Math Kernel Library updated to version 11.0

o Removed support for Intel® Pentium® III processor. See the Knowledge Base

article on Deprecations for further information.

http://software.intel.com/en-us/articles/intel-mkl-whats-deprecated/
http://software.intel.com/en-us/articles/intel-mkl-whats-deprecated/

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 5

 Intel® Integrated Performance Primitives updated to version 7.1

o Intel® IPP static threaded libraries now available in separate package

 Intel® Threading Building Blocks update to version 4.1

 Compiler compatibility with clang added (-use-clang-env)

 32-bit Apple* Mac* system hosts no longer supported

 OS X* 10.8 support added

 Xcode 4.3 and 4.4 support added

 Versions of Xcode* prior to 4.3 are no longer supported

 OS X* 10.6 is no longer supported

 The Intel® Software Manager has been added to help you manage product updates and

license activation

 New C++11 features

 Improved support for future Intel processors

 New Warning Level –w3 and Changes to Warning Levels in Composer XE 2013

 Xcode* integration only installation no longer provided

1.2 Product Contents

Intel® C++ Composer XE 2013 Update 3 for OS X* includes the following components:

 Intel® C++ Compiler XE 13.0.2 for building applications that run on Intel-based Mac

systems running the OS X* operating system

 Intel® Debugger 13.0

 Intel® Integrated Performance Primitives 7.1 Update 1

 Intel® Math Kernel Library 11.0 Update 3

 Intel® Threading Building Blocks 4.1 Update 3

 Integration into the Xcode* development environment

 On-disk documentation

1.3 System Requirements

 A 64-bit Intel®-based Apple* Mac* system host (development for 32-bit is still supported)

 1GB RAM minimum, 2GB RAM recommended

 3GB free disk space

 One of the following combinations of OS X*, Xcode* and the Xcode SDK:

o OS X 10.8 and Xcode* 4.4, 4.5, or 4.6 and SDK 10.8

o OS X 10.7 and Xcode* 4.4, 4.5, or 4.6 and SDK 10.7

 If doing command line development with Xcode* 4.4 (or later), the Command Line Tools

component of Xcode* is required

Note: Advanced optimization options or very large programs may require additional resources

such as memory or disk space.

1.4 Documentation

Product documentation can be found in the Documentation folder as shown under Installation

Folders.

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 6

1.5 Samples

Samples for each product component can be found in the Samples folder as shown under

Installation Folders.

1.6 Technical Support

If you did not register your compiler during installation, please do so at the Intel® Software

Development Products Registration Center at http://registrationcenter.intel.com. Registration

entitles you to free technical support, product updates and upgrades for the duration of the

support term.

For information about how to find Technical Support, Product Updates, User Forums, FAQs, tips

and tricks, and other support information, please visit:

http://www.intel.com/software/products/support/

Note: If your distributor provides technical support for this product, please contact them for

support rather than Intel.

2 Installation
The installation of the product requires a valid license file or serial number. If you are evaluating

the product, you can also choose the “Evaluate this product (no serial number required)” option

during installation.

If you will be using Xcode*, please make sure that a supported version of Xcode is installed. If

you install a new version of Xcode in the future, you must reinstall the Intel C++ Compiler

afterwards.

The Command Line Tools component, required for command-line development, is not installed

by default. It can be installed using the Components tab of the Downloads preferences panel.

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 7

You will need to have administrative or “sudo” privileges to install, change or uninstall the

product.

If you received the compiler product on DVD, insert the DVD. Locate the disk image file

(xxx.dmg) on the DVD and double-click on it. If you received the compiler product as a

download, double-click the downloaded file.

Follow the prompts to complete installation.

Note that there are several different downloadable files available, each providing different

combinations of components. Please read the download web page carefully to determine which

file is appropriate for you.

You do not need to uninstall previous versions or updates before installing a newer version –

the new version will coexist with the older versions.

2.1 Intel® Software Manager

The installation now provides an Intel® Software Manager to provide a simplified delivery

mechanism for product updates and provide current license status and news on all installed

Intel® software products.

You can also volunteer to provide Intel anonymous usage information about these products to

help guide future product design. This option, the Intel® Software Improvement Program, is not

enabled by default – you can opt-in during installation or at a later time, and may opt-out at any

time. For more information please see http://intel.ly/SoftwareImprovementProgram.

2.2 Using a License or Serial Number from Intel® C++ Compiler 11.1

Professional Edition to Install

Serial numbers and licenses distributed for use with the Intel® C++ Compiler 11.1 Professional

Edition will not work with Intel® C++ Composer XE 2013. You can obtain a new upgraded

license and serial number for free if your current product is active by doing the following:

1. Login to the Intel® Software Development Products Registration Center at

http://registrationcenter.intel.com by entering your Login ID and Password in the

Registered Users Login section of the web page. You will find a list of all products you

have subscriptions for in the "My Products" page.

2. For the current product, you will see the XE product name displayed in addition to the

original product name. Clicking the latest update in the download latest update column

leads you to the product upgrade page. Click the product name to upgrade.

3. You can now send yourself an email with the updated license file or use the updated

serial number to install the C++ Composer XE 2013 product.

2.3 Using a License Server

If you have purchased a "floating" license, see http://intel.ly/pjGfwC for information on how to

install using a license file or license server. This article also provides a source for the Intel®

License Server that can be installed on any of a wide variety of systems.

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 8

2.4 Xcode* integration-only installation no longer provided

The C++ Composer XE 2013 installation only allows you to install with command-line tools only

or with command-line tools and Xcode* integration. There is no longer an option to only install

the integration with Xcode*.

2.5 Installation Folders

The compiler installs, by default, under /opt/intel – this is referenced as <install-dir>

in the remainder of this document. You are able to specify a different location.

The directory organization has changed since the Intel® Compilers 11.1 release.

While the top-level installation directory has also changed between the original C++ Composer

XE 2011 release and Composer XE 2013, the composerxe symbolic link can still be used to

reference the latest product installation.

Under <install-dir> are the following directories:

 bin – contains symbolic links to executables for the latest installed version

 lib – symbolic link to the lib directory for the latest installed version

 include – symbolic link to the include directory for the latest installed version

 man – symbolic link to the directory containing man pages for the latest installed version

 ipp – symbolic link to the directory for the latest installed version of Intel® Integrated

Performance Primitives

 mkl – symbolic link to the directory for the latest installed version of Intel® Math Kernel

Library

 tbb – symbolic link to the directory for the latest installed version of Intel® Threading

Building Blocks

 composerxe – symbolic link to the composer_xe_2013 directory

 composer_xe_2013 – directory containing symbolic links to subdirectories for the latest

installed Intel® Composer XE 2013 compiler release

 composer_xe_2013.<n>.<pkg> - physical directory containing files for a specific

compiler version. <n> is the update number, and <pkg> is a package build identifier.

Each composer_xe_2013 directory contains the following directories that reference the latest

installed Intel® Composer XE 2013 compiler:

 bin – directory containing scripts to establish the compiler environment and symbolic

links to compiler executables for the host platform

 pkg_bin – symbolic link to the compiler bin directory

 include – symbolic link to the compiler include directory

 lib – symbolic link to the compiler lib directory

 ipp – symbolic link to the ipp directory

 mkl – symbolic link to the mkl directory

 tbb – symbolic link to the tbb directory

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 9

 debugger – symbolic link to the debugger directory

 man – symbolic link to the man directory

 Documentation – symbolic link to the Documentation directory

 Samples – symbolic link to the Samples directory

Each composer_xe_2013.<n>.<pkg> directory contains the following directories that

reference a specific update of the Intel® Composer XE 2013 compiler:

 bin – all executables

 pkg_bin – symbolic link to bin directory

 compiler – shared libraries and header files

 debugger – debugger files

 Documentation – documentation files

 man – symbolic link to the man directory

 ipp – Intel® Integrated Performance Primitives libraries and header files

 mkl – Intel® Math Kernel Library libraries and header files

 tbb – Intel® Threading Building Blocks libraries and header files

 Samples – Product samples and tutorial files

If you have both the Intel C++ and Intel Fortran compilers installed, they will share folders for a

given version and update.

This directory layout allows you to choose whether you want the latest compiler, no matter

which version, the latest update of the Intel® Composer XE 2013 compiler, or a specific update.

Most users will reference <install-dir>/bin for the compilervars.sh [.csh] script,

which will always get the latest compiler installed. This layout should remain stable for future

releases.

2.6 Installing Intel® Integrated Performance Primitives Cryptography

Libraries

The Intel® Integrated Performance Primitives product provides an optional component

containing libraries of cryptography routines. Installation and use of the cryptography libraries

requires a separate license that is available at no charge from Intel once your license for Intel

Integrated Performance Primitives has been registered. Export restrictions apply. For details,

please see http://intel.ly/ndrGnR

2.7 Relocating Product After Install

The Xcode integration is relocatable simply by dragging and dropping the Xcode directory tree

to another location. If you wish to use idb from a command prompt using a relocated Xcode

directory tree, please see http://intel.ly/q3Fl3R for additional steps that are required. Note that

idb is not available from within the Xcode IDE.

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 10

2.8 Removal/Uninstall

It is not possible to remove the compiler while leaving any of the performance library

components installed.

1. Open Terminal and set default (cd) to any folder outside <install-dir>

2. Type the command:

<install-dir>/composer_xe_2013.<n>.<pkg>/uninstall_ccompxe.sh

3. Follow the prompts

If you are not currently logged in as root you will be asked for the root password.

3 Intel® C++ Compiler
This section summarizes changes, new features and late-breaking news about the Intel C++

Compiler.

3.1 New and Changed Features

C++ Composer XE 2013 now contains Intel® C++ Compiler XE 13.0. The following features are

new or significantly enhanced in this version. For more information on these features, please

refer to the documentation.

 Improved support for 3rd Generation Intel® Core™ processor family (-xCORE-AVX-I and

–axCORE-AVX-I) and future Intel processors supporting Intel® Advanced Vector

Extensions 2 (Intel® AVX2) (-xCORE-AVX2 and –axCORE-AVX2)

 Features from C++11 (-std=c++0x)

o Additional type traits

o Uniform initialization

o Generalized constant expressions (partial support)

o noexcept

o Range based for loops

o Conversions of lambdas to function pointers

o Implicit move constructors and move assignment operators

o Support for C++11 features in gcc 4.6 and 4.7 headers

 Compatibility with the Clang environment using the –use-clang-env option (note there is

currently no support for libc++)

3.1.1 Inline assembly and intrinsic support for Intel architecture code named Broadwell

added to Composer XE 2013 Update 1

Some new instructions have been added in the upcoming Intel architecture code named

Broadwell. Composer XE 2013 Update 1 has added inline assembly and intrinsic support for

these instructions. Intrinsics are defined in immintrin.h.

extern int _rdseed16_step(unsigned short *random_val);

extern int _rdseed32_step(unsigned int *random_val);

extern int _rdseed64_step(unsigned __int64 *random_val);

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 11

These intrinsics generate random numbers of 16/32/64 bit wide random integers. These

intrinsics are mapped to the hardware instruction RDSEED. The generated random value is

written to the given memory location and the success status is returned - 1if the hardware

returned a valid random value, and 0 otherwise.

The difference between rdseed and rdrand intrinsics is that rdseed intrinsics meet the NIST

SP 800-90B and NIST SP 800-90C standards, while the rdrand meets the NIST SP 800-90A

standard.

extern unsigned char _addcarry_u32(unsigned char c_in, unsigned int

src1, unsigned int src2, unsigned int *sum_out);

extern unsigned char _addcarry_u64(unsigned char c_in, unsigned

__int64 src1, unsigned __int64 src2, unsigned __int64 *sum_out);

The intrinsic computes the sum of two 32/64 bit wide integer values (src1, src2) and a carry-

in value. The carry-in value is considered 1 for any non-zero c_in input value or 0 otherwise.

The sum is stored to a memory location referenced by sum_out argument:

*sum_out = src1 + src2 + (c_in !=0 ? 1 : 0)

The intrinsic does not perform validness check of a memory address pointed by sum_out thus

it cannot be used to find out if a sum produces carry-out without storing result of the sum. The

return value of the intrinsic is a carry-out value generated by sum. The sum result is stored into

memory location pointed by sum_out argument.

extern unsigned char _subborrow_u32(unsigned char b_in, unsigned int

src1, unsigned int src2, unsigned int *diff_out);

extern unsigned char _subborrow_u64(unsigned char b_in, unsigned

__int64 src1, unsigned __int64 src2, unsigned __int64 *diff_out);

The intrinsic computes the sum of a 32/64 bit wide unsigned integer value src2 and a borrow-in

value and then subtracts the result of the sum from the 32/64 bit wide unsigned integer value

src1. The borrow-in value is considered 1 for any non-zero b_in input value or 0 otherwise.

The difference is then stored to a memory location referenced by diff_out argument:

*diff_out = src1 + (src2 + (b_in !=0 ? 1 : 0))

The intrinsic does not perform validness check of a memory address pointed by diff_out thus

it cannot be used to find out if a subtraction produces borrow-out without storing the result of the

subtraction. The return value of the intrinsic is a borrow-out value generated by subtraction. The

result of the subtraction is stored into memory location pointed by the diff_out argument.

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 12

extern unsigned char _addcarryx_u32(unsigned char c_in, unsigned int

src1, unsigned int src2, unsigned int *sum_out);

extern unsigned char _addcarryx_u64(unsigned char c_in, unsigned

__int64 src1, unsigned __int64 src2, unsigned __int64 *sum_out);

The intrinsic computes sum of two 32/64 bit wide integer values (src1, src2) and a carry-in

value. The carry-in value is considered 1 for any non-zero c_in input value or 0 otherwise. The

sum is stored to a memory location referenced by sum_out argument:

*sum_out = src1 + src2 + (c_in !=0 ? 1 : 0)

The intrinsic does not perform validness check of a memory address pointed by sum_out thus

it cannot be used to find out if a sum produces carry-out without storing the result of the sum.

The intrinsic is translated to either a ADCX or ADOX instruction depending on compiler’s

decision. By their design these instructions allow running of two interleaved add-with-carry

instruction sequences in parallel via using ADCX and ADOX instructions for these sequences

respectively. The return value of the intrinsic is the carry-out value generated by the sum. The

sum result is stored into memory location pointed by the sum_out argument.

New _MM_HINT_ET0 hint to _mm_prefetch instrinsic

The _MM_HINT_ET0 hint makes the intrinsic being lowered to the instruction PREFETCHW

which is supported by the Intel architecture code name Broadwell. Check if the target CPU

supports the instruction PREFETCHW before using _MM_HINT_ET0.

3.1.2 core_4th_gen_avx added for manual cpu dispatch in Composer XE 2013 Update 1

The cpuid “core_4th_gen_avx” is now supported for use with the cpu_dispatch and

cpu_specific manual cpu dispatch mechanisms. This cpuid targets processors that

support Intel® Advanced Vector Extensions 2 (Intel® AVX2).

3.1.3 Intel® Cilk™ Plus “scalar” Clause removed

The “scalar” clause used optionally with Intel® Cilk™ Plus elemental functions is removed in this

release. Please use the functionally equivalent “uniform” clause instead.

3.1.4 Support for Intel® Advanced Vector Extensions 2 (Intel® AVX2) Instructions in

2011 Update 7

The compiler in Intel® C++ Composer XE 2011 Update 7 supports use of Intel® AVX2

instructions in inline assembly and in intrinsics in immintrin.h.

3.1.5 Intel® Cilk™ Plus fully supported in 2011 Update 6

Intel® Cilk™ Plus language extensions for implementing task parallelism which includes

cilk_spawn, cilk_for, cilk_sync and Cilk Plus reducers are now supported on OS X* in Update 6.

Please refer to the documentation for details.

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 13

3.1.6 Intel® Cilk™ Plus Array Notations Semantics Change in 2011 update 6

In Intel® C++ Composer XE 2011, an Intel® Cilk™ Plus array section assignment like the

following:

a[:] = b[:] + c[:];

could potentially generate temporary copies of the results, impacting performance.

Starting in Intel® C++ Composer XE 2011 Update 6, if an array section on the right hand side of

an assignment (in the example given, b[:] or c[:]) partially overlaps the array section on the left

hand side (in the example given, a[:]) in memory, this assignment will be undefined, and it is up

to the programmer to assure that there is no partial overlap in memory on assignments in order

to get defined behavior.

An exception to this is if the array sections completely overlap, for example:

a[:] = a[:] + 3;

Since array a overlaps itself completely, this summation will work as expected.

3.1.7 -export and –export-dir deprecated starting in 2011 update 4

The two compiler options –export and –export-dir support the C++ template export feature. This

feature initially planned for support in the C++0x standard was dropped from this standard. The

Intel compiler is deprecating this feature and will remove it in a future release.

3.1.8 Additional Keywords for –sox option, default changed in 2011 update 3

The –sox option, which adds information to the object and executable file about compiler

options used and procedure profiling information, has been enhanced to let the user request

that the list of inlined functions be included and to let the user exclude information about

procedure profiling.

The syntax for –sox is now:

-[no]sox

-sox=keyword[,keyword]

Where keyword is one of inline or profile. If -sox is specified with no keywords, only the

command line options are included – this is a change from previous releases. To maintain the

previous behavior, use -sox=profile. Multiple -sox options may be specified on the

command line – if so, they are interpreted in left-to-right order.

3.1.9 Three intrinsics changed in 2011 update 2

Three intrinsics (_rdrand16_step(), _rdrand32_step(), _rdrand64_step()) have been changed in

update 2. The documentation has not been updated with these new changes. These intrinsic

return a hardware-generated random value and are declared in the “immintrin.h” header file.

These three intrinsics are mapped to a single RDRAND instruction, generate random numbers

of 16/32/64 bit wide random integers.

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 14

Syntax

1. extern int _rdrand16_step(unsigned short *random_val);

2. extern int _rdrand32_step(unsigned int *random_val);

3. extern int _rdrand64_step(unsigned __int64 *random_val);

Description

The intrinsics perform one attempt to generate a hardware generated random value

using the instruction RDRAND. The generated random value is written to the given

memory location and the success status is returned: 1 if the hardware returned a valid

random value and 0 otherwise.

Return

A hardware-generated 16/32/64 random value.

Constraints

The _rdrand64_step() intrinsic can be used only on systems with the 64-bit registers

support.

3.2 New and Changed Compiler Options

For details on these and all compiler options, see the Compiler Options section of the on-disk

documentation.

3.2.1 New and Changed in Composer XE 2013

 -vec-report6

 -f[no-]defer-pop

 -f[no-]optimize-sibling-calls

 -fextend-arguments=[32|64]

 -guide-profile=<file|dir>[,[file|dir],…]

 -openmp-link <library>

 -debug [no]pubnames

 -std=c++11 (same as –std=c++0x)

 -no-]check-uninit functionality expanded to –check=<keyword>[,<keyword>…]. Use –

check=[no]uninit for original functionality.

 -w3

 -W[no-]unused-parameter

 -W[no-]invalid-pch

 -noerror-limit removed

 -watch=<keyword>

 -nowatch

 -use-clang-env

 -clang-name=<name>

 -clangxx-name=<name>

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 15

 -static-libstdc++

 -[no_]pie

 -ipp-link={static|dynamic|static_thread}

For a list of deprecated compiler options, see the Compiler Options section of the

documentation.

3.2.2 –gcc-version is deprecated in Composer XE 2013 Update 2

-gcc-version functionality has been superceded by –gcc-name. –gcc-version has therefore been

deprecated and may be removed from a future release.

3.2.3 New Warning Level –w3 and Changes to Warning Levels in Composer XE 2013

Here's the new warning levels as listed in “icc –help”:

-w<n> control diagnostics

 n = 0 enable errors only (same as -w)

 n = 1 enable warnings and errors (DEFAULT)

 n = 2 enable verbose warnings, warnings and errors

 n = 3 enable remarks, verbose warnings, warnings and errors

Previously, remarks were listed under –w2. This has been changed so that remarks are now

enabled under the new warning level –w3.

3.2.4 -ipp-link option

This option is used with -ipp to indicate which variant of the Intel® Integrated Performance

Primitives libraries should be used. There are three options, static to link against the static

single-threaded libraries, dynamic to link against the dynamic libraries, or static-thread to link

against the static multithreaded libraries. Note that the static multithreaded libraries are only

available in a separate package.

3.3 Other Changes

3.3.1 Support for Microsoft loop pragma syntax added to Composer XE 2013 Update 1

Support for the Microsoft Visual C++ 2012* compiler’s #pragma loop

[hint_parallel(n),no_vector,ivdep]is added for Composer XE 2013 Update 1.

3.3.2 Environment Setup Script Changed

The compilervars.sh script is used to establish the compiler environment.

The command takes the form:

source <install-dir>/bin/compilervars.sh argument

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 16

Where argument is either ia32 or intel64 as appropriate for the architecture you are

building for. Establishing the compiler environment also establishes the environment for the

Intel® Debugger, Intel® Performance Libraries and, if present, Intel® Fortran Compiler.

3.3.3 OpenMP* Legacy Libraries Removed

The OpenMP “legacy” libraries have been removed in this release. Only the “compatibility”

libraries are provided.

3.4 Sample Notes

3.4.1 Building Tachyon

There are a couple common problems that may come up in the course of building Tachyon. If

you use the provided Makefile to do a command-line build of the Tachyon sample, you may get

errors about not finding directories or finding pbxcp. If you get these, go to the file

common/gui/makefile.gmake, look for where the two variables XCODE_SDK_SYSROOT and

PBXCP are set and change them to point to the location of your Mac OS X 10.6 SDK and the

pbxcp binary respectively.

For building from Xcode*, you may run into problems building the build_with_tbb configuration

with llvm gcc*. The problem will be that the libtbb.dylib cannot be found. In this case, go to the

Summary->Linked Frameworks and Libraries section, and manually add the libtbb.dylib

library from the composer_xe_2013.x.xxx/compiler/lib directory.

3.5 Known Limitations

3.5.1 No support for libc++.

The Intel compiler currently does not support the new libc++ library on OS X* (-stdlib=libc++).

4 Intel® Debugger (IDB)

4.1 Support Deprecated for Intel® Debugger

In a future major release of the product, the Intel® Debugger may be removed. This would

remove the ability to use the idb command line debugger.

4.2 Compilation Requirements

4.2.1 Debug information stored in object files

Starting with Xcode 2.3, the Dwarf debugging information is stored in the object (.o) files. These

object files are accessed by the debugger to obtain information related to the application being

debugged and thus must be available for symbolic debugging.

In cases where a program is compiled and linked in one command, such as:

 icc -g -o hello.exe hello.c

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 17

the object files are generated by the compiler but deleted before the command completes. The

binary file produced by this command will have no debugging information. To make such an

application debuggable users have two options.

Users may build the application in two steps, explicitly producing a .o file:

 icc -c -g -o hello.o hello.c

 icc -g -o hello.exe hello.o

Alternatively, users may use the compiler switch -save-temps to prevent the compiler from

deleting the .o files it generates:

 icc -g -save-temps -o hello.exe hello.c

The debugger does not use the output of the “dsymutil” utility.

4.2.2 Compilation requirements for debugging on OS X* 10.7 (64-bit only)

OS X* 10.7 defaults to building 64-bit executables with Position Independent Executable (PIE)
code. However, the Intel Debugger (IDB) does not currently support debugging 64-bit
executables built with PIE. To disable PIE, add the following options at the end of the command
line:

–Wl,-no_pie

Or if in Xcode*, select “Don’t Create Position Independent Executables” under Build Settings.

Note that the –g (and optionally –save-temps to save your object files) options are also

required to build debuggable applications on all OS X versions.

4.3 Known Issues

4.3.1 Dwarf vs. Stabs Debug Formats

The debugger only supports debugging of executables whose debug information is in Dwarf2

format, and does not support the Stabs debug format. Use the -gdwarf-2 flag on the compile

command to have gcc and g++ generate Dwarf output. The Intel compilers (icc and ifort)

produce Dwarf2 debug format with the –g flag.

4.3.2 Debug Info from Shared Libraries

The debugger does not read debug information from shared libraries. Therefore you cannot set

a breakpoint to symbols like _exit which are part of a system library.

4.3.3 Non-local Binary and Source File Access

The debugger cannot access binary files from a network-mounted file system (such as NFS).

The error message will look like this:

Internal error: cannot create absolute path for: /home/me/hello

You cannot debug "/home/me/hello" because its type is "unknown".

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 18

The debugger cannot access source files from a network-mounted file system (such as NFS).

The error message will look like this:

Source file not found or not readable, tried...

./hello.c

/auto/mount/site/foo/usr1/user_me/c_code/hello.c

(Cannot find source file hello.c)

The file-path specified will be correct.

The workaround in both cases is to copy the files to a local file system (i.e., one which is not

mounted over the network).

4.3.4 Debugging applications that fork

Debugging the child process of an application that calls fork is not yet supported.

4.3.5 Debugging applications that exec

The $catchexecs control variable is not supported.

4.3.6 Snapshots

Snapshots are not yet supported as described in the manual.

4.3.7 Debugging optimized code

Debugging optimized code is not yet fully supported. The debugger may not be able to see

some function names, parameters, variables, or the contents of the parameters and variables

when code is compiled with optimizations turned on.

4.3.8 Watchpoints

Watchpoints that are created to detect write access don't trigger when a value identical to the

original has been written. These restrictions are due to a limitation in the OS X* operating

system.

Because the SIGBUS signal rather than the SIGSEGV signal is used by the debugger to

implement watchpoints, you cannot create a signal detector which will catch a SIGBUS signal.

4.3.9 Graphical User Interface (GUI)

This version of the debugger does not support the GUI

4.3.10 MPP Debugging Restrictions

MPP debugging is not supported as described in the manual.

4.3.11 Function Breakpoints

Debugger breakpoints set in functions (using the "stop in" command) may not halt user program

execution at the first statement. This is due to insufficient information regarding the function

prologue in the generated Dwarf debug information. As a work-around, use the "stop at"

command to set a breakpoint on the desired statement.

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 19

The compiler generates a call to "__dyld_func_lookup" as part of the prologue for some

functions. If you set a breakpoint on this function the debugger will stop there, but local variable

values may not be valid. The work-around is to set a breakpoint on the first statement inside the

function.

4.3.12 Core File Debugging

Debugging core files is not yet supported.

4.3.13 Universal Binary Support

Debugging of universal binaries is supported. The debugger supports debugging the IA-32

Dwarf sections of binaries on IA-32 and either the IA-32 or the Intel® 64 sections on Intel® 64.

4.3.14 Debugger variable $threadlevel

The manual's discussion of the debugger variable "$threadlevel" says "On Mac OS X*, the

debugger supports POSIX threads, also known as pthreads." This sentence might be read as

implying that other kinds of threads might be supported. This is not true; only POSIX threads are

supported on OS X*.

4.3.15 Open File Descriptors Limitation

Because the debugger opens the .o files of a debuggee to read debug information, you should

raise the open file limit.

OS X* limits the number of open file descriptors to 256. You can increase this limit as follows:

ulimit -n 2000

Please use this command to increase the number of open descriptors before starting the

debugger.

This is a workaround until the debugger can better share a limited number of open file
descriptors over many files.

4.3.16 $cdir, $cwd Directories

$cdir is the compilation directory (if recorded). This is supported in that the directory is set; but

$cdir is not itself supported as a symbol.

$cwd is the current working directory. Neither the semantics nor the symbol are supported.

The difference between $cwd and '.' is that $cwd tracks the current working directory as it

changes during a debug session. '.' is immediately expanded to the current directory at the time

an entry to the source path is added.

4.3.17 info stack Usage

The GDB mode debugger command "info stack" does not currently support negative frame

counts the way GDB does, for the following command:

 info stack [num]

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 20

A positive value of num prints the innermost num frames, a zero value prints all frames and a

negative one prints the innermost –num frames in reverse order.

4.3.18 $stepg0 Default Value Changed

The debugger variable $stepg0 changed default to a value of 0. With the value "0" the

debugger will step over code without debug information if you do a "step" command. Set the

debugger variable to 1 to be compatible with previous debugger versions as follows:

(idb) set $stepg0 = 1

5 Intel® Integrated Performance Primitives
This section summarizes changes, new features and late-breaking news about this version of

Intel® Integrated Performance Primitives (Intel® IPP). For detailed information about IPP see

the following links:

 New features: see the information below and visit the main Intel IPP product page on

the Intel web site at: http://intel.ly/OG5IF7; and the Intel IPP Release Notes at

http://intel.ly/OmWI4d.

 Documentation, help, and samples: see the documentation links on the IPP product

page at: http://intel.ly/OG5IF7.

5.1 Intel® IPP static threaded Libraries are Available as a Separate

Download

If you require the static threaded version of the Intel® IPP libraries, they are no longer provided

in the default Composer XE package. There should be a separate package available from the

same area where you downloaded the Composer XE package that contains these libraries.

5.2 Intel® IPP Cryptography Libraries are Available as a Separate

Download

The Intel® IPP cryptography libraries are available as a separate download. For download and

installation instructions, please read http://intel.ly/ndrGnR

5.3 Intel® IPP Code Samples

The Intel® IPP code samples are organized into downloadable packages at

http://intel.ly/pnsHxc

The samples include source code for audio/video codecs, image processing and media player

applications, and for calling functions from C++, C# and Java*. Instructions on how to build the

sample are described in a readme file that comes with the installation package for each sample.

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 21

6 Intel® Math Kernel Library
This section summarizes changes, new features and late-breaking news about this version of

Intel® Math Kernel Library (Intel® MKL). All the bug fixes can be found here:

http://intel.ly/OeHQqf

6.1 Notices

Please refer to the Knowledge Base article on Deprecations for more information on the

following notices

 PGI compilers are not supported for Intel® MKL running on Mac OS X* 10.8

 Removed Intel MKL GNU Multiple Precision* (GMP) function interfaces

 Disabled timing function mkl_set_cpu_frequency() to perform useful work — use

mkl_get_max_cpu_frequency(), mkl_get_clocks_frequency(), and

mkl_get_cpu_frequency() as described in the Intel MKL Reference Manual

 Removed MKL_PARDISO constant — used MKL_DOMAIN_PARDISO to specify the

PARDISO domain with the mkl_domain_set_num_threads() function

 Removed special backward compatibility functions for convolution and correlation

functions in Intel MKL 10.2 update 4

 Documentation:

o The Intel MKL Reference Manual in HTML format is no longer available with the

product

6.2 Changes in This Version

6.2.1 What’s New in Intel® MKL 11.0 Update 3

 BLAS:

o Improved serial and multithreaded performance of DGEMM on 2nd and 3rd

Generation Intel® Core™ microarchitectures

 Linpack:

o Updated the Intel® Optimized MP LINPACK Benchmark for Clusters package to

HPL 2.1

 Sparse BLAS:

o Improved performance of DCOOMM on Intel® Advanced Vector Extensions 2

(Intel® AVX2)

 LAPACK:

o Parallelized ?LASET, ?LACPY, ?LANGE, ?LANSY

 FFT:

o Improved Complex-to-complex power-of-2 FFT performance on Intel AVX2

 VSL:

o Improved performance of SFMT19937 Basic Random Number Generator

(BRNG) on Intel AVX2

 Cluster FFT:

o Improved hybrid mode (MPI + OpenMP*) Cluster FFT performance

 Data Fitting:

http://software.intel.com/en-us/articles/intel-mkl-whats-deprecated/

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 22

o Improved performance of df?construct1d function for linear and

Hermite/Bessel/Akima cubic types of splines on Intel® Xeon® X5570 and Intel®

Xeon® E5-2690 CPUs series

 Known Issue: User application on OS X* linked with the libmkl_rt.so library where the

first call to Intel MKL was made in a parallel section will crash with a segmentation fault

or with either of these messages:

“malloc: *** error for object xxxxx: pointer being freed was not

allocated *** set a breakpoint in malloc_error_break to debug”

OR

“malloc: *** error for object xxxxx: double free !!! *** set a

breakpoint in malloc_error_break to debug”

Workaround: Call any Intel MKL function before parallel section.

6.2.2 What’s New in Intel® MKL 11.0 Update 2

 Introduced Intel MKL Extended Eigensolver:

Intel MKL Extended Eigensolver is a high performance package for solving symmetric
standard or generalized symmetric-definite eigenvalue problems on matrices in dense,
LAPACK banded, and sparse (CSR) formats. It is based on an innovative fast and stable
numerical algorithm named Feast (See Attributions section below)

 Sparse BLAS:
o Improved performance of 0-based DCSRMM significantly

 LAPACK:
o Improved performance of parallel versions of x (OR/UN)(M/G)(LQ/QL/QR/RQ)

functions significantly
 ScaLAPACK:

o Updated version to 2.0.2. New functions introduced include:
 PxHSEQR: Nonsymmetric Eigenvalue Problem
 PxSYEVR/PxHEEVR: MRRR (Multiple Relatively Robust

Representations) algorithm
 VSL:

o Supported ICDF (Inverse cumulative distribution function) method in VSL
Lognormal RNG

o Added “const” specifier to declarations of Summary Statistics functions
 Data Fitting:

o Improved performance of df[d/s]Interpolate1D, df[d/s]InterpolateEx1D,
df[d/s]SearchCells1D, df[d/s]SearchCellsEx1D routines for default/quasi-uniform
partition, sorted interpolation sites in scalar (number of interpolation sites is 1)
and vector cases for Intel® Xeon® processor X5570 and Intel® Xeon® processor
E5-2600

o Supported DF_DISABLE_CHECK_FLAG parameter in dfiEditVal editor to
improve performance for small number of interpolation sites (fewer than one
dozen) by disabling checking of the correctness of parameters in Data Fitting
routines

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 23

o Added “const” specifier to declarations of functions
 Transposition:

o Parallelized general out-of-place matrix transposition (mkl_?omatcopy2),
improving its performance significantly

 Service functions:
o Added mkl_peak_mem_usage function which provides information about peak

memory amount used by Intel MKL Memory Allocator
o Added mkl_calloc and mkl_realloc functions extending MKL Memory Allocator

functionality to standard C library memory allocation API
 Enhanced SMP LINPACK with residual check:

It returns error code 1 if a failure is detected and prints conclusion if resulting residuals
are ok to pass precision check or not. Please note that residuals might slightly vary from
run-to-run on the same matrix if conditional numerical reproducibility mode is not turned
on. The check ensures that results are reliable

6.2.3 What’s New in Intel® MKL 11.0 Update 1

 BLAS:

o Improved DGEMM and double-precision Level 3 BLAS performance on AMD*

Family “Bulldozer” CPUs

 PARDISO: Imaginary part of the diagonal values for Hermitian matrices are ignored

 Cluster FFT:

o Improved hybrid Cluster FFT (MPI + OpenMP*) performance up to 2 times

o A new Cluster FFT algorithm (Segment of Interest FFT) that uses less

communication was implemented for 1D FFTs and it can be enabled by setting

the environment variable "MKL_CFFT_SOI_ENABLE" to "YES" or "1" — see

more info in the Intel® MKL documentation

 VSL:

o Added support of VSL_SS_METHOD_FAST_USER_MEAN method for

computation of descriptive Summary Statistics estimates given user-provided

mean

o Improved performance of VSL_SS_METHOD_FAST method for computations of

descriptive Summary Statistics estimates on Intel® Xeon® processor E5-2690

CPU

 Transposition: Improved performance of Out-of-place transposition on 2nd generation

Intel® Core™ microarchitecture (up to 7x)

 Service functions: Removed seven service functions with obsolete names (see more

details in this article on obsolete service functions removed)

 Bug fixes

6.2.4 Changes in Initial Release

 Conditional Bitwise Reproducibility (CBWR): New functionality in Intel MKL now allows

you to balance performance with reproducible results by allowing greater flexibility in

code branch choice and by ensuring algorithms are deterministic. See the Intel MKL

User’s Guide for more information. Refer to the CBWR Knowledge Base Article for more

information.

http://software.intel.com/en-us/articles/some-service-functions-have-become-obsolete-and-will-be-removed-in-subsequent-releases/
http://intel.ly/OeHQqf
http://software.intel.com/en-us/articles/conditional-bitwise-reproducibility/

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 24

 Intel MKL also introduces optimizations using the new Intel® Advanced Vector

Extensions 2 (AVX2) including the new FMA3 instructions. See the Knowledge Base

article on support for Intel® AVX2

 BLAS:

o Improved DSYRK/SSYRK performance for 64-bit programs supporting Intel®

Advanced Vector Extensions (Intel® AVX)

 LAPACK:

o Introduced support for LAPACK version 3.4.1

 FFT :

o Added configuration parameter DFTI_THREAD_LIMIT which limits the number of

threads per descriptor

o Added support for 1D real-to-complex transforms with sizes given by 64-bit prime

integers

 VML /VSL:

o Improved performance of viRngGeometric on Intel® Advanced Vector Extensions

(Intel AVX)

o Implemented threading in Data Fitting Integrate1d function

 Transposition: Parallelized in-place transposition of square matrices with leading

dimensions greater than the matrix size for single and double precisions improving its

performance significantly

 Implemented local threading control function (mkl_set_num_threads_local) which

increases flexibility in threading control

 Link Line Advisor:

o Added Help-Me functionality for selecting architecture (IA-32/Intel® 64) and

interface layer (LP64/ILP64)

6.3 Attributions

As referenced in the End User License Agreement, attribution requires, at a minimum,

prominently displaying the full Intel product name (e.g. "Intel® Math Kernel Library") and

providing a link/URL to the Intel® MKL homepage (http://www.intel.com/software/products/mkl)

in both the product documentation and website.

The original versions of the BLAS from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/blas/index.html.

The original versions of LAPACK from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson,

Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.

Hammarling, A. McKenney, and D. Sorensen. Our FORTRAN 90/95 interfaces to LAPACK are

similar to those in the LAPACK95 package at http://www.netlib.org/lapack95/index.html. All

interfaces are provided for pure procedures.

The original versions of ScaLAPACK from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are L. S.

http://software.intel.com/en-us/articles/haswell-support-in-intel-mkl/
http://software.intel.com/en-us/articles/haswell-support-in-intel-mkl/

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 25

Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,

G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.

The Intel® MKL Extended Eigensolver functionality is based on the Feast Eigenvalue Solver 2.0

http://www.ecs.umass.edu/~polizzi/feast/

PARDISO in Intel® MKL is compliant with the 3.2 release of PARDISO that is freely distributed

by the University of Basel. It can be obtained at http://www.pardiso-project.org.

Some FFT functions in this release of Intel® MKL have been generated by the SPIRAL software

generation system (http://www.spiral.net/) under license from Carnegie Mellon University. The

Authors of SPIRAL are Markus Puschel, Jose Moura, Jeremy Johnson, David Padua, Manuela

Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang

Chen, Robert W. Johnson, and Nick Rizzolo.

7 Intel® Threading Building Blocks
For information on changes to Intel® Threading Building Blocks (Intel® TBB), please read the

file CHANGES in the Intel® TBB documentation directory.

8 Disclaimer and Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R)

PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL

ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING

BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY

APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A

SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined." Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The information here is subject to change without notice. Do not finalize a design with this

information.

The products described in this document may contain design defects or errors known as errata

which may cause the product to deviate from published specifications. Current characterized

errata are available on request.

Intel® C++ Composer XE 2013 for OS X*
Installation Guide and Release Notes 26

Contact your local Intel sales office or your distributor to obtain the latest specifications and

before placing your product order.

Copies of documents which have an order number and are referenced in this document, or

other Intel literature, may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate

features within each processor family, not across different processor families. Go to:

http://www.intel.com/products/processor%5Fnumber/

Celeron, Centrino, Intel, Intel logo, Intel386, Intel486, Atom, Core, Itanium, MMX, Pentium,

VTune, Cilk, and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2013 Intel Corporation. All Rights Reserved.

http://www.intel.com/products/processor_number/

