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Better scalability and improved performance for Intel® Threading Building 
Blocks versus Windows* threads.

Features

Ready to Use Parallel Algorithms

•	 Quickly employ commonly needed 
algorithms designed for parallel 
performance and scalability

•	 Generic templates let you easily tailor 
these algorithms to your needs

•	 Supports easy plug-in deployment into 
applications to deliver scalable software 
speed-up. Optimizes for both available 
cores and cache locality

•	 Reduce the work required to produce 
threaded software in many cases by 
means of pre-built parallel constructs

Intel® Threading Building Blocks 
1.1 for Windows*, Linux*, and Mac OS*

Thread Like an Expert
Intel® Threading Building Blocks 1.1 is a C++ runtime library that abstracts the low-level 
threading details necessary for optimal multi-core performance. The library is also inherently 
scalable, so no code maintenance is required as more processor cores become available.

Intel® Software Development Products

Product Brief

“We’re excited about 	
the potential of Intel® 	
Threading Building 	
Blocks to bring scalable 
performance automatically, 	
without requiring us to 
update our code to 	
support the latest 	
multi-core processor.”§ 

 Gerry Hawkins
 Maya Team Leader
 Media & Entertainment
 Autodesk

Cross Platform Support

Write applications once and deploy on 
multiple OS’s.

•	 Provides a single solution for Windows*, 
Linux*, and Mac OS* on 32-bit and 64-bit 
platforms using Intel®, Microsoft, and 	
GNU compilers

•	 Supports industry-leading compilers from 
Intel, Microsoft and GNU

•	 Speeds deployment of applications on 
multiple multi-core platforms

Intel® Threading Building Blocks offers platform portability on Windows*, Linux*, and Mac OS* through its cross-platform API.  This code comparison shows the additional code needed to make a 2D ray tracing program, 
Tacheon, correctly threaded.  This allows the application to take advantage of current and future multi-core hardware. This example includes software developed by John E. Stone.  

Thread Setup and Initialization
pthread_mutex_t MyMutex, MyMutex2, MyMutex3;
#include <sys/sysinfo.h>
int get_num_cpus (void) {
    return get_nprocs ();
}
int nthreads = get_num_cpus ();
pthread_t *threads = (pthread_t *) alloca (nthreads * sizeof (pthread_t));
pthread_mutex_init (&MyMutex, NULL);
pthread_mutex_init (&MyMutex2, NULL);
pthread_mutex_init (&MyMutex3, NULL);
for (int i = 0; i < nthreads; i++) {
    pthread_create (&threads[i], NULL, parallel_thread, i);
}
for (int i = 0; i < nthreads; i++) {
    void *exit_val;
    pthread_join (threads[i], &exit_val);
}

Parallel Task Scheduling and Execution
const int MINPATCH = 150;
const int DIVFACTOR = 2;
typedef struct work_queue_entry_s {
    patch pch;
    struct work_queue_entry_s *next;
} work_queue_entry_t;
work_queue_entry_t *work_queue_head = NULL;
work_queue_entry_t *work_queue_tail = NULL;
void generate_work (patch* pchin)
{  int startx, stopx, starty, stopy;
    int xs,ys;
    startx=pchin->startx; stopx= pchin->stopx;
    starty=pchin->starty; stopy= pchin->stopy;
    if(((stopx-startx) >= MINPATCH) || ((stopy-starty) >= MINPATCH)) {
      int xpatchsize = (stopx-startx)/DIVFACTOR + 1;
      int ypatchsize = (stopy-starty)/DIVFACTOR + 1;
      for (ys=starty; ys<=stopy; ys+=ypatchsize)
      for (xs=startx; xs<=stopx; xs+=xpatchsize) {
        patch pch;
        pch.startx = xs;
        pch.starty = ys;
        pch.stopx  = MIN(xs+xpatchsize-1,stopx);
        pch.stopy  = MIN(ys+ypatchsize-1,stopy);
        generate_work (&pch);}
    } else {
      /* just trace this patch */
      work_queue_entry_t *q = (work_queue_entry_t *) malloc (sizeof 
(work_queue_entry_t));
      q->pch.starty = starty; q->pch.stopy = stopy;
      q->pch.startx = startx; q->pch.stopx = stopx;
      q->next = NULL;

      if (work_queue_head == NULL) {
          work_queue_head = q;
      } else {
          work_queue_tail->next = q;
      }
      work_queue_tail = q;
    }
}
void generate_worklist (void)
{
    patch pch;
    pch.startx = startx;
    pch.stopx = stopx;
    pch.starty = starty;
    pch.stopy = stopy;
    generate_work (&pch);
}
bool schedule_thread_work (patch &pch)
{
    pthread_mutex_lock (&MyMutex3);
    work_queue_entry_t *q = work_queue_head;
    if (q != NULL) {
        pch = q->pch;
        work_queue_head = work_queue_head->next;
    }
    pthread_mutex_unlock (&MyMutex3);
    return (q != NULL);
}
generate_worklist ();

void parallel_thread (void *arg)
{
    patch pch;
    while (schedule_thread_work (pch)) {
        for (int y = pch.starty; y <= pch.stopy; y++) {
            for (int x=pch.startx; x<=pch.stopx; x++) {
                render_one_pixel (x, y);}}       
        if (scene.displaymode == RT_DISPLAY_ENABLED) {
            pthread_mutex_lock (&MyMutex3);
            for (int y = pch.starty; y <= pch.stopy; y++) {
                GraphicsDrawRow(pch.startx-1, y-1, pch.stopx-pch.startx+1, 
(unsigned char *) &global_buffer[((y-starty)*totalx+(pch.startx-startx))*3]); 
            }
            pthread_mutex_unlock (&MyMutex3);
        }
    }
} 

Intel® Threading Building Blocks 1.0 2D Ray Tracing Application

POSIX* Threads Intel® Threading Building Blocks
Thread Setup and Initialization
#include "tbb/task_scheduler_init.h" 
#include "tbb/spin_mutex.h"
tbb::task_scheduler_init init;
tbb::spin_mutex MyMutex, MyMutex2;

Parallel Task Scheduling and Execution
#include "tbb/parallel_for.h"
#include "tbb/blocked_range2d.h"
class parallel_task {
public: 
    void operator() (const tbb::blocked_range2d<int> &r) const {
        for (int y = r.rows().begin(); y != r.rows().end(); ++y) {
            for (int x = r.cols().begin(); x != r.cols().end(); x++) {
                render_one_pixel (x, y);
            }
        }   
        if (scene.displaymode == RT_DISPLAY_ENABLED) {
            tbb::spin_mutex::scoped_lock lock (MyMutex2);
            for (int y = r.rows().begin(); y != r.rows().end(); ++y) {
                GraphicsDrawRow(startx-1, y-1, totalx, (unsigned char 
*) &global_buffer[(y-starty)*totalx*3]);
            }
        }
    }
    parallel_task () {}
};
parallel_for (tbb::blocked_range2d<int> (starty, stopy + 1, 
grain_size, startx, stopx + 1, grain_size), parallel_task ());

Side-by-side comparison of equivalent Windows* thread functionality shows 
dramatically simpler implementation with Intel® Threading Building Blocks 
versus native threads.



Performance
Intel Threading Building Blocks targets threading for performance.

Highly Concurrent Containers 
Optimize the processor’s ability to perform simultaneous tasks.

•	 Simplify multithreaded application development with 
interfaces designed for thread-safety and high concurrency

•	 Improve application quality by employing pre-tested 	
data structures

•	 Improve application performance by enabling 	
multiple execution cores or processors to work 	
together more efficiently

Task Based Parallelism

•	 Lets the developer focus on higher levels of scalable task 
patterns instead of low-level thread mechanics

•	 Uses proven data-decomposition abstractions that efficiently 
use multiple cores

•	 Enables automatic load balancing

•	 Efficiently supports nested parallelism, allowing parallel 
components to be built from other parallel components

Compatibility
The Intel Threading Building Blocks are cross-platform 
(Windows, Linux, and Mac OS), support 32-bit and 64-bit 
applications, and work with Intel, Microsoft, and GNU compilers.

TBB also provides a Library Based Solution:

•	 Your C++ application simply calls the Threading Building 
Blocks library

•	 Standard C++ – no need to rewrite code in a new language

•	 Compatible with other threading packages

•	 Allows unlimited distribution of the runtime libraries with 
your software

•	 Seamlessly integrates into existing development environments

This library is specifically designed to work in concert with other 
threading technologies, providing a high degree of design and 
development flexibility. The templates implemented in Intel 
Threading Building Blocks rely on generic programming in order 
to provide high-speed and flexible algorithms with very few 
implementation constraints.

Intel Threading Building Blocks adds to the functionality of Intel® 
Thread Checker, Intel® Thread Profiler, and the Intel® Compilers, to 
enable the rapid implementation of high-performance threads in 
applications.

System Requirements
Please refer to www.intel.com/software/products/tbb for details on 
hardware and software requirements.

Support
Every purchase of an Intel® Software Development Product 
includes a year of support services, which provides access to 
Intel® Premier Support and all product updates during that time. 
Intel Premier Support gives you online access to technical notes, 
application notes, and documentation.

About Intel® Software Development Products
Intel Software Development Products can help you easily create 
the fastest software possible by offering a full suite of tools 
that include:

•	 Intel® Compilers

•	 Intel® VTune™ Performance Analyzers

•	 Intel® Performance Libraries

•	 Intel® Threading Analysis Tools

•	 Intel® Cluster Tools 

Visit our Web site at www.intel.com/software/products for details 
about our entire line of products.
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Download a trial version today.  
www.intel.com/software/products/tbb
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