
� � � � � � ��
��������������������

��

��

��

��

��

��

��

��

���������������������������� ���
���

��
��
��
�

�����
������������

�����������������������������

��� � �� �
��������������������������������������� ��

��
���
��
���

����
����

����

����
����

����
����

����������������������������������
��

����������������� ���
���

Better scalability and improved performance for Intel® Threading Building
Blocks versus Windows* threads.

Features

Ready to Use Parallel Algorithms

•	 Quickly employ commonly needed
algorithms designed for parallel
performance and scalability

•	 Generic templates let you easily tailor
these algorithms to your needs

•	 Supports easy plug-in deployment into
applications to deliver scalable software
speed-up. Optimizes for both available
cores and cache locality

•	 Reduce the work required to produce
threaded software in many cases by
means of pre-built parallel constructs

Intel® Threading Building Blocks
1.1 for Windows*, Linux*, and Mac OS*

Thread Like an Expert
Intel® Threading Building Blocks 1.1 is a C++ runtime library that abstracts the low-level
threading details necessary for optimal multi-core performance. The library is also inherently
scalable, so no code maintenance is required as more processor cores become available.

Intel® Software Development Products

Product Brief

“We’re excited about 	
the potential of Intel® 	
Threading Building 	
Blocks to bring scalable
performance automatically, 	
without requiring us to
update our code to 	
support the latest 	
multi-core processor.”§

 Gerry Hawkins
 Maya Team Leader
 Media & Entertainment
 Autodesk

Cross Platform Support

Write applications once and deploy on
multiple OS’s.

•	 Provides a single solution for Windows*,
Linux*, and Mac OS* on 32-bit and 64-bit
platforms using Intel®, Microsoft, and 	
GNU compilers

•	 Supports industry-leading compilers from
Intel, Microsoft and GNU

•	 Speeds deployment of applications on
multiple multi-core platforms

Intel® Threading Building Blocks offers platform portability on Windows*, Linux*, and Mac OS* through its cross-platform API. This code comparison shows the additional code needed to make a 2D ray tracing program,
Tacheon, correctly threaded. This allows the application to take advantage of current and future multi-core hardware. This example includes software developed by John E. Stone.

Thread Setup and Initialization
pthread_mutex_t MyMutex, MyMutex2, MyMutex3;
#include <sys/sysinfo.h>
int get_num_cpus (void) {
 return get_nprocs ();
}
int nthreads = get_num_cpus ();
pthread_t *threads = (pthread_t *) alloca (nthreads * sizeof (pthread_t));
pthread_mutex_init (&MyMutex, NULL);
pthread_mutex_init (&MyMutex2, NULL);
pthread_mutex_init (&MyMutex3, NULL);
for (int i = 0; i < nthreads; i++) {
 pthread_create (&threads[i], NULL, parallel_thread, i);
}
for (int i = 0; i < nthreads; i++) {
 void *exit_val;
 pthread_join (threads[i], &exit_val);
}

Parallel Task Scheduling and Execution
const int MINPATCH = 150;
const int DIVFACTOR = 2;
typedef struct work_queue_entry_s {
 patch pch;
 struct work_queue_entry_s *next;
} work_queue_entry_t;
work_queue_entry_t *work_queue_head = NULL;
work_queue_entry_t *work_queue_tail = NULL;
void generate_work (patch* pchin)
{ int startx, stopx, starty, stopy;
 int xs,ys;
 startx=pchin->startx; stopx= pchin->stopx;
 starty=pchin->starty; stopy= pchin->stopy;
 if(((stopx-startx) >= MINPATCH) || ((stopy-starty) >= MINPATCH)) {
 int xpatchsize = (stopx-startx)/DIVFACTOR + 1;
 int ypatchsize = (stopy-starty)/DIVFACTOR + 1;
 for (ys=starty; ys<=stopy; ys+=ypatchsize)
 for (xs=startx; xs<=stopx; xs+=xpatchsize) {
 patch pch;
 pch.startx = xs;
 pch.starty = ys;
 pch.stopx = MIN(xs+xpatchsize-1,stopx);
 pch.stopy = MIN(ys+ypatchsize-1,stopy);
 generate_work (&pch);}
 } else {
 /* just trace this patch */
 work_queue_entry_t *q = (work_queue_entry_t *) malloc (sizeof
(work_queue_entry_t));
 q->pch.starty = starty; q->pch.stopy = stopy;
 q->pch.startx = startx; q->pch.stopx = stopx;
 q->next = NULL;

 if (work_queue_head == NULL) {
 work_queue_head = q;
 } else {
 work_queue_tail->next = q;
 }
 work_queue_tail = q;
 }
}
void generate_worklist (void)
{
 patch pch;
 pch.startx = startx;
 pch.stopx = stopx;
 pch.starty = starty;
 pch.stopy = stopy;
 generate_work (&pch);
}
bool schedule_thread_work (patch &pch)
{
 pthread_mutex_lock (&MyMutex3);
 work_queue_entry_t *q = work_queue_head;
 if (q != NULL) {
 pch = q->pch;
 work_queue_head = work_queue_head->next;
 }
 pthread_mutex_unlock (&MyMutex3);
 return (q != NULL);
}
generate_worklist ();

void parallel_thread (void *arg)
{
 patch pch;
 while (schedule_thread_work (pch)) {
 for (int y = pch.starty; y <= pch.stopy; y++) {
 for (int x=pch.startx; x<=pch.stopx; x++) {
 render_one_pixel (x, y);}}
 if (scene.displaymode == RT_DISPLAY_ENABLED) {
 pthread_mutex_lock (&MyMutex3);
 for (int y = pch.starty; y <= pch.stopy; y++) {
 GraphicsDrawRow(pch.startx-1, y-1, pch.stopx-pch.startx+1,
(unsigned char *) &global_buffer[((y-starty)*totalx+(pch.startx-startx))*3]);
 }
 pthread_mutex_unlock (&MyMutex3);
 }
 }
}

Intel® Threading Building Blocks 1.0 2D Ray Tracing Application

POSIX* Threads Intel® Threading Building Blocks
Thread Setup and Initialization
#include "tbb/task_scheduler_init.h"
#include "tbb/spin_mutex.h"
tbb::task_scheduler_init init;
tbb::spin_mutex MyMutex, MyMutex2;

Parallel Task Scheduling and Execution
#include "tbb/parallel_for.h"
#include "tbb/blocked_range2d.h"
class parallel_task {
public:
 void operator() (const tbb::blocked_range2d<int> &r) const {
 for (int y = r.rows().begin(); y != r.rows().end(); ++y) {
 for (int x = r.cols().begin(); x != r.cols().end(); x++) {
 render_one_pixel (x, y);
 }
 }
 if (scene.displaymode == RT_DISPLAY_ENABLED) {
 tbb::spin_mutex::scoped_lock lock (MyMutex2);
 for (int y = r.rows().begin(); y != r.rows().end(); ++y) {
 GraphicsDrawRow(startx-1, y-1, totalx, (unsigned char
*) &global_buffer[(y-starty)*totalx*3]);
 }
 }
 }
 parallel_task () {}
};
parallel_for (tbb::blocked_range2d<int> (starty, stopy + 1,
grain_size, startx, stopx + 1, grain_size), parallel_task ());

Side-by-side comparison of equivalent Windows* thread functionality shows
dramatically simpler implementation with Intel® Threading Building Blocks
versus native threads.

Performance
Intel Threading Building Blocks targets threading for performance.

Highly Concurrent Containers
Optimize the processor’s ability to perform simultaneous tasks.

•	 Simplify multithreaded application development with
interfaces designed for thread-safety and high concurrency

•	 Improve application quality by employing pre-tested 	
data structures

•	 Improve application performance by enabling 	
multiple execution cores or processors to work 	
together more efficiently

Task Based Parallelism

•	 Lets the developer focus on higher levels of scalable task
patterns instead of low-level thread mechanics

•	 Uses proven data-decomposition abstractions that efficiently
use multiple cores

•	 Enables automatic load balancing

•	 Efficiently supports nested parallelism, allowing parallel
components to be built from other parallel components

Compatibility
The Intel Threading Building Blocks are cross-platform
(Windows, Linux, and Mac OS), support 32-bit and 64-bit
applications, and work with Intel, Microsoft, and GNU compilers.

TBB also provides a Library Based Solution:

•	 Your C++ application simply calls the Threading Building
Blocks library

•	 Standard C++ – no need to rewrite code in a new language

•	 Compatible with other threading packages

•	 Allows unlimited distribution of the runtime libraries with
your software

•	 Seamlessly integrates into existing development environments

This library is specifically designed to work in concert with other
threading technologies, providing a high degree of design and
development flexibility. The templates implemented in Intel
Threading Building Blocks rely on generic programming in order
to provide high-speed and flexible algorithms with very few
implementation constraints.

Intel Threading Building Blocks adds to the functionality of Intel®
Thread Checker, Intel® Thread Profiler, and the Intel® Compilers, to
enable the rapid implementation of high-performance threads in
applications.

System Requirements
Please refer to www.intel.com/software/products/tbb for details on
hardware and software requirements.

Support
Every purchase of an Intel® Software Development Product
includes a year of support services, which provides access to
Intel® Premier Support and all product updates during that time.
Intel Premier Support gives you online access to technical notes,
application notes, and documentation.

About Intel® Software Development Products
Intel Software Development Products can help you easily create
the fastest software possible by offering a full suite of tools
that include:

•	 Intel® Compilers

•	 Intel® VTune™ Performance Analyzers

•	 Intel® Performance Libraries

•	 Intel® Threading Analysis Tools

•	 Intel® Cluster Tools

Visit our Web site at www.intel.com/software/products for details
about our entire line of products.

Intel, the Intel logo, Itanium, Pentium, Intel Centrino, Intel Xeon, Intel XScale, VTune, Celeron, Intel NetBurst, and MMX are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other brands and names may be claimed as the property of others.

Copyright © Intel Corporation, 2007. All rights reserved. 071105/DAM/ITF/2000 314241-001

Download a trial version today.
www.intel.com/software/products/tbb

www.intel.com/software/products/tbb
www.intel.com/software/products
www.intel.com/software/products/tbb

