
The Tower of Babel fell, and all
of the earth’s languages were
“confused.” Nevertheless, while
understanding each other’s speech
remains a confusing prospect, we
have made great progress in sifting
through each other’s computer
texts.

For purposes of text searching,
this article uses the dtSearch®

product line as its example in
discussing international language
search issues. Many of the
concepts, however, such as
Unicode, have broad applicability.

Unicode
In the beginning (not the

Biblical beginning, but the DOS
and early Windows beginning), the
ASCII character set was the vehicle
for expressing different languages.
Each character had an allocation of
a single byte, or eight bits. Taking
eight bits to express each character
made 256 (or 2 to the 8th power)
characters available in the ASCII
character set. English characters,
punctuation, control characters

Searching Beyond the Tower of Babel:
Unicode and Text Retrieval

Programming in a certain
level of insensitivity as the
default for Unicode
searching is a technique
that dtSearch, for
example, uses to avoid
false misses resulting from
Unicode anomalies.

Reprinted with permission of PC AI Online Magazine V. 17 #4
For more information about PC AI Online Magazine, visit www.pcai.com

And the Lord came down to see the city and the tower,
which the sons of men had built. And the Lord said,
“Behold, they are one people, and they have all one
language; and this is only the beginning of what they will
do; and nothing that they propose to do will now be
impossible for them. Come, let us go down, and there
confuse their language, that they may not understand one
another’s speech.”

So the Lord scattered them abroad from there over the
face of the earth, and they left off building the city.
Therefore its name was called Babel, because there the
Lord confused the language of all the earth; and from there
the Lord scattered them abroad over the face of the earth.

— Genesis

The Tower of Babel, by C. Decker, in 1679.

(carriage return, backspace, etc.)
and numbers took up the first
128 characters, leaving only 128
characters to work with for non-
English text.

The major successor to the
ASCII character set is Unicode,
as defined by the Unicode
Consortium, www.unicode.org.
Unicode is now as close to a
universal standard as there is in
the computer world. All recent
major operating systems, Web
browsers, Office software and the
like now support the Unicode
standard.

Unicode UCS-16 uses a
double-byte or 16-bits to express
all language characters. With 16-
bits, the number of characters
available skyrockets from 256 to
65,536 (or 2 to the 16th power).
The Unicode Consortium assigns
the 65,536 available characters
into groups called subranges.
Each subrange has 256
characters. Subrange 0 includes
English letters and numbers,
along with commonly used
punctuation. For example, the
letter A is character 65 of
subrange 0.

While A is the 65th character
of subrange 0, Unicode expresses
this position in base 16
hexadecimal format as U+0041.

(Unicode characters by
convention start with U+. And
65 in base 10 is the same as 41 in
base 16.)

Although the U+ syntax is
the convention for describing a
Unicode character, the computer
stores characters as individual
bytes ranging from 0 to 255. For
the English letter A, the
representation under UCS-16
would consist of two bytes: one
byte representing subrange 0,
and another byte representing a
41 hexadecimal value. The last
section in this article discusses
issues relating to byte order: “big
endian” vs. “little endian,” and
forensics.

The Unicode character
designations distinguish between
capital and lowercase letters.
While A is U+0041, a is U+0061.
Unicode also distinguishes
accented characters, so, for
example, â is U+00E2. What
Unicode does not define is
different fonts for the same
character, or different ways of
drawing a letter, such as Arial or
Times Roman. Nor does
Unicode define other letter
attributes, such as italics,
underlining, bold, size, or color.
While these are not part of the
Unicode standard, applications
such as Web browsers and word
processors may nonetheless hold
and display this information
along with Unicode text.

Different alphabets generally
have different subranges
associated with them. French,
German and Spanish share
subrange zero with English.
Arabic, Hebrew and Greek each
have their own subrange.
Japanese, Chinese and Korean
each have a number of subranges
because of the large number of
ideographs in those languages.
Unicode even has a subrange for

mathematical symbols.
Unicode text is not without

some odd properties. Each
character contains a unique value.
However, certain characters can
look identical and yet have very
different meanings. For example,
π the mathematical symbol and π
the letter of the Greek alphabet
look alike visually, but have
different Unicode encodings.
Before clicking on that “special
email-only offer” link, see
Unicode and Link Deception for a
caution that arises from this
visual similarity issue.

Unicode and Link
Deception

When you move the cursor
over a link in an email or a
Web site, the URL appears in
Unicode, offering reassurance
that you know where the link is
heading. But what may appear
as a favorite Internet shopping
site, www.XYZshoppingsite.com,
may actually incorporate
characters from other Unicode
subranges masquerading as
www.XYZshoppingsite.com.

Underlying this deception
is the fact that very different
Unicode characters can share
the same visual representation.
For example, the English
lowercase letter i (U+0069)
looks the same as the roman
numeral i (U+2170).

Accordingly, if you click a
link in an email, think twice
before revealing any
confidential information such
as a credit card number.
Instead, retype the URL in a
browser address bar, so you
know exactly where you are
going.

Reprinted with permission of PC AI Online Magazine V. 17 #4
For more information about PC AI Online Magazine, visit www.pcai.com

In dtSearch, the fuzzy
search algorithm adjusts
from 0 to 10 at search
time to look for
typographical deviations.
A search forTower of
Babel with a fuzziness of
1 would findTower of
Babell. With a fuzziness
of 3, the search would
find Tour of Bagel.

Unicode UCS-16 radically
increases the number of
international language characters
available relative to the old ASCII
standard. However, it is less
efficient than the ASCII 8-bit
encoding in that it takes up twice
the space to represent each
character. A newer UCS-32
standard is even less efficient in
that it takes four times the space
as the old ASCII standard to
represent a single character. This
outcome led to the development
of yet another Unicode encoding
standard, UTF-8.

Under UTF-8, all English
characters and basic punctuation
— i.e. the characters up through
127 of subrange 0 under
UCS-16 — have single-byte
representation. Other characters
have two or three byte
representation equivalent to their
UCS-16 value. Because the
majority of characters in most
English text fall in the single-byte
category, UTF-8 is generally a
more efficient means of
representing such text.

Unicode and Searching
While the Unicode standard

is a great advance in making the

text of any language easily
representable, Unicode poses a
unique set of issues for searching.
One issue is Unicode’s
representation of the same
numeric values with different
encodings in different subranges.
Performing a Unicode search for
subrange 0 character 3 would not
automatically retrieve the
Gujarati number 3. Likewise, a
search for character A in
subrange 0 would not find a very
similar letter A in another
subrange, or even an accented or

lowercase version of A in
subrange 0.

Programming in a certain
level of insensitivity as the default
for Unicode searching is a
technique that dtSearch, for
example, uses to avoid false
misses resulting from Unicode
anomalies. With the default
insensitivity, a search for 3 would
find the Gujarti 3. A search for
an A would retrieve lowercase
and accented versions of that
letter. While the defaults for
search sensitivity are adjustable,

Fuzzy, adjustable from Yes
0 to 10 to sift through
typographical deviations

Natural language with Yes
vector-space relevancy
ranking

Variable term weighting Yes

Phrase Yes

Boolean (and/or/not) Yes

Proximity and directed Yes
proximity

Wildcard Yes

Macros Yes

Numeric range Yes

Fielded data Yes
(alone or combined with
full-text searching)

Phonic/Soundex No

Stemming and noise No; requires a Language
word adjustment Extension Pack or

equivalent to work
(see text discussion)

Advanced language- No; requires language
specific morphology analyzer plug-in through
(e.g. for Asian languages) API

Synonym/concept/ No; requires language-
thesaurus specific plug-in through

API

Search Types General Language-
Neutral Application

All terminology relates to the dtSearch product line.

Reprinted with permission of PC AI Online Magazine V. 17 #4
For more information about PC AI Online Magazine, visit www.pcai.com

dtSearch’s UK
distributor [has] a
Language Extension Pack
for over a dozen very
diverse noise word lists
and stemming rules,
including Danish,
Dutch, Finnish, German,
Greek, Hungarian,
Italian, Norwegian,
Polish, Portuguese,
Russian, Spanish,
Swedish and Turkish.

generally the broader the
formulation of a Unicode search
request, the smaller the number of
false misses.

The text searching process
does not just look for an exact
sequence of letters or numbers
that form a word or phrase, but it
also looks for word variations,
Boolean operations, contextual
relevancy-ranking, and the like.
What is most remarkable is what
can work universally in a
completely language-neutral
capacity, using only Unicode and
search engine functionality.

Language-Neutral Search
Functionality

One of the most important
issues for a search engine is sifting
through typographical deviations
that occur in words. Such
deviations may result from
different spellings of the same
basic word, such as defense for an
American spelling, and defence for
a British spelling. They can also
result from errors in scanning and
OCR (Optical Character
Recognition) processing. These
character deviations can even
result from mistyping, a problem
that frequently plagues emails and
email attachments.

In dtSearch, the fuzzy search
algorithm adjusts from 0 to 10 at
search time to look for
typographical deviations. A search
forTower of Babel with a fuzziness

Indexed vs. Unindexed Searching
Indexed searching is the most common method of searching

through very large document collections, although exceptions
exist. In forensics, an unindexed search may be useful for making
an initial determination if a document collection is even relevant.
In single-pass operations such as email filtering, unindexed
searching is also the norm. Generally, however, indexed searching
is the standard for the sole reason that even across a very large
document collection, an indexed search is usually instantaneous.

The following excerpt from the article “Distributed (Indexed)
Searching: Evolution to XML,” published in the July/August
2001 edition of PC AI Magazine, further explains indexed vs.
unindexed searching:

Randomly opening documents to find the correct one is a
form of unindexed searching. Advanced unindexed searching
might iterate over files looking for specific key words. The main
drawback of this searching technique is slow speed; it is
particularly inefficient for successive searching.

The alternative to unindexed searching is indexed
searching. As document collections grow from megabytes to
gigabytes to terabytes, searching these large document sets
usually mandates some form of indexing. Just as it is often
faster to locate a particular topic using a book’s index rather
than thumbing through each page, it is faster to search for
information using indexed computer files. Moreover, indexing
with a modern full-text search program is easy — simply click
on directories or drives and the search program does the work.

For complex document formats such as Word,
WordPerfect, Access, Excel, PowerPoint, PDF, ZIP, HTML,
XML, etc., a code at the beginning of each document informs
the program what formatting to expect as it parses the
document. Good indexing programs can even fully index the
occasional corrupt document (the one that a word processor
suddenly refuses to open).

Indexed search engines also operate over a network. If
EnterpriseX has a 5,000-page policy manual, each employee
could separately index it, saving and searching the resulting
index. Alternatively, for improved efficiency, the network
administrator could build one policy manual index for shared
access. Hundreds of people can simultaneously search the
index, with the network software simultaneously updating the
index.

The search techniques that this article describes, including
Unicode, fuzzy, Boolean, wildcard, etc., at least for the dtSearch
product line, relate equally to indexed and unindexed searching.
The major exception to this rule is natural language searching
with vector-space density rankings, as this option requires
indexing to determine word frequency in the documents.

Reprinted with permission of PC AI Online Magazine V. 17 #4
For more information about PC AI Online Magazine, visit www.pcai.com

Most documents contain
a heading indicating the
language system,
enabling easy search
engine interpretation.
Forensically recovered
data is often an
exception to the rule.

of 1 would find Tower of Babell.
With a fuzziness of 3, the search
would find Tour of Bagel. While
subject to adjustment, the fuzzy
search default is to locate the first
couple of letters in a word, and
then to look for deviations in
letters beyond that.

Fuzzy searching is similar to
Unicode sensitivity adjustment in
that the fuzzier a search, the
more false misses it will avoid. In
the case of fuzzy searching,
however, it is also true that the
fuzzier the search, the more false
hits it will retrieve. While Tower
of Babell might be a desirable hit,
a Tour of Bagel coffee shop might
be completely off point.
dtSearch, for example, allows
fuzziness adjustments upon
entering a search request — as
opposed to hardwiring it into the
search index — to enable easy
modification at search time. See
Indexed vs. Unindexed Searching
for a further discussion of search
indexes.

Because fuzzy searching looks
for deviations in any characters
relative to a search request, it
works for all international

languages, without distinction.
Similarly, searching with
wildcard character placeholders,
such as ? to hold a single
character space or * to hold any
number of character spaces, also
works universally. Another
example of a fully language
neutral search option is natural
language searching.

dtSearch, for instance,
processes natural language
expressions through the vector-
space method of assigning a
relevancy rank to each document
based on the density and rarity of
search terms in that document
relative to the entire document
collection. In a search for corpx
takeover memo, if memo appears
in 10,000 documents, takeover
appears in 2,500 documents, and
corpx appears in only 3
documents, the corpx documents
would come up as the most
relevant.

Since vector-space natural
language processing depends on
the density and rarity of search
terms in a document collection,
it is language independent. If
anything, the key factor in the

operation of natural language
searching relates more to the
requirements of the document
collection, then the actual
language. For example, if the
same corpx takeover memo search
took place across a corpx memo
document collection, then corpx
and memo might be the most
prevalent terms, and takeover
documents would receive the
highest relevancy rank.

A variant of natural language
searching, which automatically
ranks retrieved documents
according to naturally occurring
search term relevancy, is variable
term weighting. This also works
across different languages in the
same way. For example, a search
for the equivalent of corpx:7
takeover:-3 memo:2 would work
in any language, with corpx
receiving an artificially high
relevancy score, and takeover
receiving a negative relevancy
score.

Other search types that work
universally across any language
include: Boolean (and/or/not),
phrase, proximity, and numeric
range (subject to the Unicode

00 54 00 68 00 65
00 20 00 77 00 65
00 61 00 74 00 68
00 65 00 72 00 20
00 69 00 73 00 20
00 63 00 6C 00 6F
00 75 00 64 00 79

54 00 68 00 65 00
20 00 77 00 65 00
61 00 74 00 68 00
65 00 72 00 20 00
69 00 73 00 20 00
63 00 6C 00 6F 00
75 00 64 00 79 00

The weather is cloudy in big-endian Unicode. The weather is cloudy in little-endian Unicode.

Reprinted with permission of PC AI Online Magazine V. 17 #4
For more information about PC AI Online Magazine, visit www.pcai.com

considerations mentioned above).
In contrast to these language-
neutral search types, a few search
features, most notably relating to
noise word lists, stemming rules
and concept/synonym/thesaurus
definitions, do benefit from
language-specific customization.

Language Customization
A search engine keeps its

index size more compact and its
general operations more efficient
by essentially ignoring a few
dozen words that are so common
in a particular language as to be,
for purposes of searching, mere
“noise.” English-language
examples would include the, of
and for. This English-language
noise word list does not work, for
example, for French, which
would require adjustments to le,
la, de, pour, etc, for optimal
performance.

Another item that requires
language-specific adjustment is
stemming, a search feature that
finds linguistically related words,
such as in English learn, learned,
learns and learning. Different
languages have very diverse root
word endings. Covering the pan-
European area, dtSearch’s UK
distributor (www.dtsearch.co.uk)
has assembled a Language
Extension Pack for over a dozen
very diverse noise word lists and
stemming rules, including
Danish, Dutch, Finnish,
German, Greek, Hungarian,

Italian, Norwegian, Polish,
Portuguese, Russian, Spanish,
Swedish and Turkish.

However, even simple
stemming adjustments will not
work for all languages. For
example, in Arabic, the
surrounding context for a word
(my, your, the, a, masculine/
feminine, etc.) can be expressed
as characters in front of or
behind the word. To use an
English-language analogy, the
apple or my apple are different
prefixes or suffixes added to
apple. To search for text in these
languages requires adding the
wildcard * in front and back of
the root word as in *apple*.

For even more extreme
morphological issues, such as
those in Asian text, an API
(application programming
interface) allows a developer to
plug-in full-fledged language-
specific analyzers. For
thesaurus/concept/synonym
searching (going beyond Boolean
searching, macros, and user-
defined synonym rings) an API
allows a developer to plug in a
complete replacement to the
built-in English-language
thesaurus.

Unicode and Forensics
Most documents contain a

heading indicating the language
system, enabling easy search
engine interpretation.
Forensically recovered data is
often an exception to the rule.
Examples of forensically
recovered data would be data
recovered through a file undelete
process, data recovered from
unallocated computer space, or
data recovered from partially
recovered file fragments.

When a search engine
encounters a document, a key

issue is the determination of the
text language. Absent Unicode,
characters below 128 indicate the
old ASCII English-language
character set. A character of 128
or above, however, may represent
any other language in the world.
Without a clear indication in the
document as to which language is
in use, it takes a fair amount of
detective work for a text retrieval
program to figure out even the
broad category of language(s)—
Middle Eastern, Western
European, Eastern European,
etc.—that the text of the
document is in.

Unicode greatly reduces this
ambiguity. Most Unicode
documents embed information
clearly identifying the Unicode
encoding in use. Even when such
information is missing, the only
ambiguity in searching Unicode
text is generally byte order.

If the subrange designation
byte comes first, the Unicode
representation goes by the name
“big endian.” If the character
position byte comes first, the
Unicode representation goes by
the name “little endian.” In
either case, to determine big
endian or little endian is a simple
either/or search engine decision,
in stark contrast to the complex
linguistic analysis that
forensically-retrieved non-
Unicode text can require.

In sum, while the spoken
languages of the world may
indeed remain confused, through
Unicode and other text retrieval
techniques, searching after the
fall of the Tower of Babel has
made some genuine progress.

dtSearch Corporation can be
reached at info@dtsearch.com,
or www.dtsearch.com.

Reprinted with permission of PC AI Online Magazine V. 17 #4
For more information about PC AI Online Magazine, visit www.pcai.com

Since [dtSearch’s] vector-
space natural language
processing depends on
the density and rarity of
search terms in a
document collection, it is
language independent.

